• Title/Summary/Keyword: Enterobacter cloacae

Search Result 124, Processing Time 0.027 seconds

Identification and Distribution of the Pathogenic Microorganisms Isolated from Edible Ice in North Area of Daegu, Korea (대구시 북구지역의 식용얼음에서 세균 분포 및 동정)

  • Kim, Su-Jung
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.86-90
    • /
    • 2009
  • The definition of edible ice is frozen water for the use of food manufacturing, processing, or cooking, as well as for the direct eating. It has been reported that in the process of ice manufacturing and its selling, edible ice is contaminated with some microorganisms, which causes food poisoning and gastroenteritis. It was shown that besides in the edible ice, germ growth caused by various reasons occurred in the mineral water, tap water, water filtering system, and water purifier. With public awareness, in order to examine the sanitary conditions of edible ice in the Northern area of Daegu metropolitan city, 15 places were randomly selected. As a result, 14 places were found to be contaminated with microorganisms. After incubating on the Brain Heart Infusion (BHI) agar plate, 80% of Gram-negative bacilli, 17% of Gram-positive cocci, and 3% of Gram-negative cocci were cultured. Enterobacter cloacae, Chryseomonas luteola, Pantoea spp., Klebsiella pneumoniae, Acinetobacter baumannii, Acinetobacter calcoaceticus or Providencia rettgeri were detected. Gram-positive cocci cultured in BHI agar plate from 5 specimens were identified as Staphylococcus aureus or Staphylococcus xylosus, which is well known bacteria causing strong food poisoning. This present paper raises questions on the importance and awareness of sanitary conditions of edible ice and the identification of pathogenic microorganisms living in the edible ice in relation to their distribution. The examination of sanitary conditions of edible ice in other areas in Daegu seems to be also needed to find out if there are similar cases.

Antioxidant Activities and Antimicrobial Effects of Extracts from Auricularia auricula-judae (목이버섯(Auricularia auricula-judae) 추출물의 항산화 활성 및 항균 효과)

  • Yu, Sang-Cheol;Oh, Tae-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • This study investigated the antioxidant and antimicrobial activities of various solvents (acetone, ethyl acetate, and ethanol) for extraction of Auricularia auricula-judae. Antioxidant activity was evaluated by determining total polyphenol and flavonoid contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging activity. Total polyphenol and flavonoid contents were not significantly different among the extracts, whereas DPPH radical scavenging activity and ABTS cation radical scavenging activity were significantly higher in ethanol and acetone extracts. DPPH radical scavenging activities of ethanol and acetone extracts showed high values (58.7% and 46.7%, respectively). The antimicrobial properties of these extracts were determined against six bacterial pathogens (Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae) by the disc diffusion method. The acetone extracts showed antimicrobial activities against all tested bacteria, and all extracts showed the highest antimicrobial activity against B. subtilis.

Triclosan Resistant Bacteria from Sewage Water: Culture Based Diversity Assessments and Co-Resistance Profiling to Other Antibiotics

  • Salman, Muhmmad;Ul Bashar, Noor;Kiran, Uzma;Shafiq, Zuhra;Khan, Fareesa;Khan, Raees;Hussain, Farrukh;Bangash, Sudhair Abbas;Ahmad, Yasin;Ahmad, Shabir
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.89-94
    • /
    • 2022
  • Triclosan (TCS) is an antimicrobial agent used in various human personal care products against both gram-positive and gram-negative bacteria. The purpose of this study was to evaluate the presence of TCS-resistant bacteria in sewage water in Peshawar, Khyber Pakhtunkhwa (KPK), Pakistan, for the first time. TCS-supplemented Luria Bertani (LB) agar was used to isolate TCS-tolerant bacteria. A total of 17 TCS-resistant isolates were randomly selected from a large pool of bacteria that showed growth on TCS-supplemented LB agar. Based on gram staining and physiochemical characteristics, the isolated strains were identified as Salmonella typhi (n = 6), Escherichia coli (n = 4), Citrobacter freundii (n = 4), Proteus mirabilis (n = 1), Enterobacter cloacae (n = 1), and Pseudomonas aeruginosa (n = 1). The Triclosan mean minimum inhibitory concentrations (MICs) for the isolates of Salmonella typhi, Escherichia coli, Citrobacter freundii, Proteus mirabilis, Enterobacter cloacae, and Pseudomonas aeruginosa were 23.66 ㎍ ml-1, 18.75 ㎍ ml-1, 42 ㎍ ml-1, 32 ㎍ ml-1, 64 ㎍ ml-1, and 128 ㎍ ml-1, respectively. The antibiogram revealed that all isolates were resistant to penicillin G (100%) and linezolid (100%), followed by ampicillin (94%), tetracycline (76%), tazobactam (76%), sulbactam/cefoperazone (64%), polymyxin PB (58%), amikacin (29.41%), aztreonam (29.41%), imipenem (5%), and gentamicin (5%). This is the first known study regarding the isolation of TCS-tolerant bacteria from sewage water in Peshawar, KPK, Pakistan. It was concluded that all the TCS-resistant isolates were multidrug resistant (MDR) gram-negative rod-shaped bacteria, mostly belonging to the Enterobacteriaceae family.

Distribution of Aerobic Intestinal Microorganisms in the Feces of the Striped Field Mouse (Apodemus agrarius coreae) in Jeju (제주지역 야생 등줄쥐(Apodemus agrarius coreae) 분변의 호기성 장내 미생물 분포)

  • Jiro KIM;Yun-Hee OH;Moo-Sang CHONG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This study examined the fecal samples of striped field mice (Apodemus agrarius coreae) captured in Jeju Special Self-Governing Province. Fecal samples, including the colon and other intestinal organs, were collected and subjected to aerobic culture to investigate the distribution of intestinal microorganisms. Gram staining of the aerobic cultured bacterial colonies from 36 fecal samples revealed the predominant presence of gram-negative bacilli in all samples. Among the 36 samples, gram-negative bacilli were identified in 36 strains (100%), gram-positive cocci in 21 strains (58.3%), and gram-positive bacilli in 15 strains (41.7%), while no gram-negative cocci were observed. The gram-negative bacilli cultured from the 36 samples were identified using the Vitek 2 system, and all were determined to be Escherichia coli (E. coli) strains. In addition, one sample was concurrently identified with E. coli and Enterobacter cloacae strains. The antimicrobial susceptibility testing for the identified E. coli strains did not include all antibiotics, but one strain exhibited intermediate resistance to cefoxitin. No pathogenic bacteria were present in the fecal samples of the scrub typhus-infected rodents, which are vectors for chigger-borne diseases affecting humans and animals.

The Optimum Culture Condition for the Increasement of Biosurfactant Produced by Pseudomonas aeruginosa F722 (생물계면활성제 생산증가를 위한 Pseudomonas aeruginosa F722의 최적배양조건)

  • 오경택;강창민;정선용
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.145-148
    • /
    • 2003
  • The hydrogen-producting bacterium was isolated from fresh water and identified as Enterbacter cloacae. The isolated was named Enterobacter cloacae YJ-1. In batch culture, The optimum cultivation temperature and pH of strain YJ-1 was 35$^{\circ}C$ and 7.5, respectively. All of the added glucose was consumed completely during fermentation even though pH was not controlled. Amount of hydrogen produced on each condition of 2% glucose, 4% sucrose and 5% fructose was 950, 1000 and 948 mL/L, respectively and resulted in increasing hydrogen production approximately 2.5-times more than controlled condition. The macimum hydrogen production was obtained when 50mM phosphate was added. was obtained when 50mM phosphate was added. In repeated0batch culture, yeast extract, but the production amount was not changed on the condition of over 0.5%, Most of the organic acides produced during the fermentation were formic and acetic acid, and propionic acid was moiety also generated.

Screening of Antimicrobial Activity from Differential Extracts of Allii sativi Bulbus (대산의 분획별 추출물에서 항균활성 검색)

  • Kim Hee Seok;Bae Heung Mo;Kim Shin Moo;Lee Hyun Ok;Kim Ki young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1184-1189
    • /
    • 2002
  • Allii sativi Bulbus(garlic) have been shown to possess medicinal value, in particular, antimicrobial activity. In this study, we compared the efficacy on some pathogenic bacteria and fungus among several different extracts(water, hexane, ethyl acetate, methanol, chloroform) of Allii sativi Bulbus. Animal pathogenic bacteria and fungus(S. gallinarium: KCTC 2441, S. flexneri: KCTC 2361, E. cloacae: KCTC 2006, K. pneumonia: KCTC 2208, C. albicans: KCTC 1940) were used to test by measurement of minimum inhibitory concentrations(MIC) and disc diffusion. Allii sativi Bulbus were cut and mixed with water at 37℃ about 24 h and filtered, and several different solvents(hexane, chloroform, ethyl acetate, methanol) were respectively added to separate the fraction of each solvent. The antimicrobial(bacteriocidal) and antifungal effect were apparently shown from water extract, hexane and ethyl acetate extract against using strains(Staphylococcus gallinarium, Shigella flexneri, Enterobacter doacae, Klebsiella pneumonia, Candida albicans). Especially, the water extract showed the superior efficacy. And the clear zone size of water extract (11~27 mm) was greater than that of gentamycin, hexane extract and ethyl acetate extract against S. gallinarium. S. flexneri, K. pneumonia and C. albicans. Minimum inhibitory concentrations(MIC) of water extract appeared to around 2.0~7.5 ㎎/㎖ against S. gallinarium, S. flexneri, E. cloacae and K. pneumonia. The greater activity was shown by water extract because the MIC of water extract for C. albicans observed in very low concentration(<1.0 ㎎/㎖) compared to hexane(5.0 ㎎/㎖) and ethyl acetate(10.0 ㎎/㎖). Therefore, these results exhibited that water extract of Allii sativi Bulbus have stronger antimicrobial activity than hexane and ethyl acetate extract, and may be useful as topical medicine of superficial infections causing C. albicans as well as antifungal agents.

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.

Hygienic Quality of Beef and Distribution of Pathogens during Cut-Meat Processing (식육의 처리 단계별 미생물 오염실태와 병원성 미생물의 분포)

  • 오영숙;이신호
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.96-102
    • /
    • 2001
  • Bacteriological quality of beef carcass and distributions of pathogens in beef processing environments were investigated to improve the hygienic quality of fresh beef. Total bacterial contamination of carcass surface in slaughtering process and cutting board in cut-meat process showed 10$^{5}$ -10$^{6}$ CFU/$\textrm{cm}^2$ and 10$^{5}$ CFU/$\textrm{cm}^2$ in summer, respectively. The viable bacterial count of cotton glove was similar to that of cutting board during and entire period of year. Microbial contamination of carcass surface, cutting board, cotton glove and deboned meat showed the highest in summer and the lowest in winter during the year. Escherichia coli O157, Pseudomonas aeruginosa, Klebsiella. ornithinolytica, Staphylococcus aureus, E coli, Tatumella. ptyseos, Serratia odorifera, Aero-monas sobria, Enterobacter cloacae and Flavimonas oryzihabitans were isolated from carcass surface during slaughter treatments. S. aureus, Listeria grayi and L. monocytogenes were isolated from cutting board and L. grayi, Erwinia spp. Salmonella app. and S. aureus were isolated from cotton glove in cut-meat process environments. Citrobacter freundii; L. monocytogenes; and S. aureus were isolated from deboned meat.

  • PDF

A Study on Suppression Components of Spoiling Ginseng (수삼부패억제 활성물질 선발연구)

  • Seon Hyun-Joo;Joo In-Sun;Sung Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.67-73
    • /
    • 1999
  • This study carried out to scanning and select the antimicrobial pharmaceuticals which were suppress the rottening of fresh ginseng. We are isolated 20 kinds of microorganisms from rotten ginseng. In these of the microorganisms, five bacteria, fresh ginseng root-rottening, are identified to Pseudomonas putida, Pseudomonas putida biotype A, Bacillus spp, Enterobacter cloacae, and Klebsiella pneumoniae. Particularly. Bacillus spp was rapidly rotted the ginseng root, compared with the others. The antimicrobial activity were tested with 19 kinds of water extracts, and 34 kinds of essential oils. The water extract of Terminaliae Fructus, and Schiandra chinensis are strongly inhibited the growth of bacteria causing the ginseng root-rottening. And 5 kind of essential oils are inhibited bacteria. It was regarded that the water extract of Terminaliae Fructus has weekly water insoluble and polar antimicrobial components.

  • PDF

Dominant-species Variation of Soil Microbes by Temperate Change (온도변화에 기인한 토양미생물 우점종의 변화에 관한 연구)

  • Park, Kap-Joo;Lee, Byeong-Chol;Lee, Jae-Seok;Park, Chan-Sun;Cho, Myung-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 2011
  • Today, the weather is changing continually, due to the progress of global warming. As the weather changes, the habitats of different organisms will change as well. It cannot be predicted whether or not the weather will change with each passing day. In particular, the biological distribution of the areas climate change affects constitutes a major factor in determining the natural state of indigenous plants; additionally, plants are constantly exposed to rhizospheric microorganisms, which are bound to be sensitive to these changes. Interest has grown in the relationship between plants and rhizopheric microorganisms. As a result of this interest we elected to research and experiment further. We researched the dominant changes that occur between plants and rhizospheric organisms due to global warming. First, we used temperature as a variable. We employed four different temperatures and four different sites: room temperature ($27^{\circ}C$), $+2^{\circ}C$, $+4^{\circ}C$, and $+6^{\circ}C$. The four different sites we used were populated by the following species: Pinus deniflora, Pinus koraiensis, Quercus acutissima, and Alnus japonica. We counted colonies of these plants and divided them. Then, using 16S rRNA analysis we identified the microorganisms. In conclusion, we identified the following genera, which were as follows: 10 species of Bacillus, 2 Enterobacter species, 4 Pseudomonas species, 1 Arthrobacter species, 1 Chryseobacterium species, and 1 Rhodococcus species. Among these genera, the dominant species in Pinus deniflora was discovered in the same genus, but a different species dominated at $33^{\circ}C$. Additionally, that of Pinus koraiensis changed in both genus and species which changed into the Chryseobacrterium genus from the Bacilus genus at $33^{\circ}C$.