• 제목/요약/키워드: Ensemble weather prediction

검색결과 43건 처리시간 0.032초

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석 (Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model)

  • 류민지;손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1191-1205
    • /
    • 2022
  • 복잡하고 광범위한 원인을 가진 대기오염물질 중 particulate matter (PM)은 입자의 크기에 따라 분류된다. 그 중 PM2.5는 그 크기가 매우 작아 사람이 흡입하면 인간의 호흡기나 심혈관에 질병을 유발할 수 있다. 이러한 위험에 대비하기 위해서는 국가 중심의 관리와 사전에 예방할 수 있는 모니터링 및 예측이 중요하다. 본 연구는 고농도 미세먼지의 발생이 잦은 서울시의 PM2.5를 local data assimilation and prediction system (LDAPS) 기상 관련 인자 15가지와 aerosol optical depth (AOD), 화학인자 4가지를 독립변수로 하여 앙상블 모델 두 가지 random forest (RF)와 extreme gradient boosting (XGB)로 예측하고자 하였다. 예측에 사용된 두 모델의 성능 평가와 인자 중요도 평가를 수행하였으며, 계절별 모델 분석도 수행하였다. 예측 정확도 결과, RF가 R2 = 0.85, XGB가 R2 = 0.91의 높은 예측 정확도를 보이며 XGB가 RF보다 PM2.5 예측에 적합한 모델임을 확인하였다. 계절별 모델 분석 결과, 봄에 농도가 높은 관측 값과 비교하여 예측 수행이 잘 되었다고 할 수 있다. 본 연구는 다양한 인자를 이용하여 서울시의 PM2.5를 예측하였고, 좋은 성능을 보이는 앙상블 기반의 PM2.5 예측 모델을 구축하였다.

현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가 (Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems)

  • 현유경;박진경;이조한;임소민;허솔잎;함현준;이상민;지희숙;김윤재
    • 대기
    • /
    • 제30권2호
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Production of Fine-resolution Agrometeorological Data Using Climate Model

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Lee, Deog-Bae;Kang, Su-Chul;Hur, Jina
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2011년도 학술발표회
    • /
    • pp.20-27
    • /
    • 2011
  • A system for fine-resolution long-range weather forecast is introduced in this study. The system is basically consisted of a global-scale coupled general circulation model (CGCM) and Weather Research and Forecast (WRF) regional model. The system makes use of a data assimilation method in order to reduce the initial shock or drift that occurs at the beginning of coupling due to imbalance between model dynamics and observed initial condition. The long-range predictions are produced in the system based on a non-linear ensemble method. At the same time, the model bias are eliminated by estimating the difference between hindcast model climate and observation. In this research, the predictability of the forecast system is studied, and it is illustrated that the system can be effectively used for the high resolution long-term weather prediction. Also, using the system, fine-resolution climatological data has been produced with high degree of accuracy. It is proved that the production of agrometeorological variables that are not intensively observed are also possible.

  • PDF

기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가 (An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5))

  • 허솔잎;현유경;류영;강현석;임윤진;김윤재
    • 대기
    • /
    • 제29권3호
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

기계학습방법을 활용한 대형 집단급식소의 식수 예측: S시청 구내직원식당의 실데이터를 기반으로 (Predicting the Number of People for Meals of an Institutional Foodservice by Applying Machine Learning Methods: S City Hall Case)

  • 전종식;박은주;권오병
    • 대한영양사협회학술지
    • /
    • 제25권1호
    • /
    • pp.44-58
    • /
    • 2019
  • Predicting the number of meals in a foodservice organization is an important decision-making process that is essential for successful food production, such as reducing the amount of residue, preventing menu quality deterioration, and preventing rising costs. Compared to other demand forecasts, the menu of dietary personnel includes diverse menus, and various dietary supplements include a range of side dishes. In addition to the menus, diverse subjects for prediction are very difficult problems. Therefore, the purpose of this study was to establish a method for predicting the number of meals including predictive modeling and considering various factors in addition to menus which are actually used in the field. For this purpose, 63 variables in eight categories such as the daily available number of people for the meals, the number of people in the time series, daily menu details, weekdays or seasons, days before or after holidays, weather and temperature, holidays or year-end, and events were identified as decision variables. An ensemble model using six prediction models was then constructed to predict the number of meals. As a result, the prediction error rate was reduced from 10%~11% to approximately 6~7%, which was expected to reduce the residual amount by approximately 40%.

확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용 (Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts)

  • 김진훈;배덕효
    • 한국수자원학회논문집
    • /
    • 제39권3호
    • /
    • pp.275-288
    • /
    • 2006
  • 본 연구에서는 GDAPS(T213) 중기 기상 수치예보 자료를 활용한 ESP (Ensemble Streamflow Prediction) 기법을 개발하여 미래에 발생할 수 있는 댐 유입량의 중장기적 확률예측을 위해 초과 확률구간별 댐 유입량을 예측하고 RPSS 검증기법으로 예측결과의 정확도를 분석하였다. 개발된 ESP시스템을 적용한 결과 일단위 개념의 확률예보는 높은 불확실성을 내포할 수 있고, 중장기 확률예보에 초점을 맞추어 1, 3, 7일 등의 예측시간 해상도에 대한 ESP정확도의 민감도를 분석한 결과 예측시간 해상도 간격이 증가할수록 예측결과의 불확실성이 감소하면서 그 정확도가 전반적으로 증가함을 살펴볼 수 있었다. 이러한 결과를 바탕으로 GDAPS 자료를 활용한 1주 단위의 한달(28일)예보를 수행한 ESP 결과는 각 초과 확률구간 분포의 적절한 증가 및 감소로 인하여 그 시간적 변동성이 안정적으로 예측되고 예측결과의 불확실성을 감소시킬 수 있어 그 활용가치가 높은 것으로 나타났다. 이러한 관점에서 본 연구의 ESP 시스템은 중장기적 측면에서 GDAPS 자료의 활용가치를 높일 수 있고, 기존 ESP 결과보다 향상된 정확도로 댐 유입량을 예측할 수 있으므로 실시간 댐 유입량 예측에 적용한다면 수자원 관리 차원에서 유용한 수단이 될 수 있을 것이다.

적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향 (Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall)

  • 이재복;이동규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

인지온도 확률예보기반 폭염-건강영향예보 지원시스템 개발 및 2019년 온열질환자를 이용한 평가 (Development of Impact-based Heat Health Warning System Based on Ensemble Forecasts of Perceived Temperature and its Evaluation using Heat-Related Patients in 2019)

  • 강미선;벨로리드 밀로슬라브;김규랑
    • 대기
    • /
    • 제30권2호
    • /
    • pp.195-207
    • /
    • 2020
  • This study aims to introduce the structure of the impact-based heat health warning system on 165 counties in South Korea developed by the National Institute of Meteorological Sciences. This system was developed using the daily maximum perceived temperature (PTmax), which is a human physiology-based thermal comfort index, and the Local ENSemble prediction system for the probability forecasts. Also, A risk matrix proposed by the World Meteorological Organization was employed for the impact-based forecasts of this system. The threshold value of the risk matrix was separately set depending on regions. In this system, the risk level was issued as four levels (GREEN, YELLOW, ORANGE, RED) for first, second, and third forecast lead-day (LD1, LD2, and LD3). The daily risk level issued by the system was evaluated using emergency heat-related patients obtained at six cities, including Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, for LD1 to LD3. The high-risks level occurred more consistently in the shorter lead time (LD3 → LD1) and the performance (rs) was increased from 0.42 (LD3) to 0.45 (LD1) in all cities. Especially, it showed good performance (rs = 0.51) in July and August, when heat stress is highest in South Korea. From an impact-based forecasting perspective, PTmax is one of the most suitable temperature indicators for issuing the health risk warnings by heat in South Korea.