Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.2.195

Development of Impact-based Heat Health Warning System Based on Ensemble Forecasts of Perceived Temperature and its Evaluation using Heat-Related Patients in 2019  

Kang, Misun (Operational Systems Development Department, National Institute of Meteorological Sciences, KMA)
Belorid, Miloslav (Convergence Meteorological Research Department, National Institute of Meteorological Sciences, KMA)
Kim, Kyu Rang (High Impact Weather Research Department, National Institute of Meteorological Sciences, KMA)
Publication Information
Atmosphere / v.30, no.2, 2020 , pp. 195-207 More about this Journal
Abstract
This study aims to introduce the structure of the impact-based heat health warning system on 165 counties in South Korea developed by the National Institute of Meteorological Sciences. This system was developed using the daily maximum perceived temperature (PTmax), which is a human physiology-based thermal comfort index, and the Local ENSemble prediction system for the probability forecasts. Also, A risk matrix proposed by the World Meteorological Organization was employed for the impact-based forecasts of this system. The threshold value of the risk matrix was separately set depending on regions. In this system, the risk level was issued as four levels (GREEN, YELLOW, ORANGE, RED) for first, second, and third forecast lead-day (LD1, LD2, and LD3). The daily risk level issued by the system was evaluated using emergency heat-related patients obtained at six cities, including Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, for LD1 to LD3. The high-risks level occurred more consistently in the shorter lead time (LD3 → LD1) and the performance (rs) was increased from 0.42 (LD3) to 0.45 (LD1) in all cities. Especially, it showed good performance (rs = 0.51) in July and August, when heat stress is highest in South Korea. From an impact-based forecasting perspective, PTmax is one of the most suitable temperature indicators for issuing the health risk warnings by heat in South Korea.
Keywords
Perceived temperature; LENS; heat-related risk; risk matrix; impact-based forecasts;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kang, M., K. R. Kim, and J.-Y. Shin, 2020: Event-based heat-related risk assessment model for South Korea using maximum perceived temperature, wet-bulb globe temberature, and air temperature data. Int. J. Environ. Res. Public Health, 17, 2631, doi:10.3390/ijerph17082631.   DOI
2 KCDC, 2019: Korea Centers for Disease Control and Prevention. [Available online at www.cdc.go.kr.].
3 Kim, J., D.-G. Lee, and J. Kysely, 2009: Characteristics of heat acclimatization for major Korean cities. Atmosphere, 19, 309-318 (in Korean with English abstract).
4 Kim, D.-W., J.-H. Chung, J.-S. Lee, and J.-S. Lee, 2014: Characteristics of heat wave mortality in Korea. Atmosphere, 24, 225-234 (in Korean with English abstract).   DOI
5 Kim, Y.-J., H. Kim, Y.-K. Kim, J.-K. Kim, and Y.-M. Kim, 2014: Evaluation of thermal environments during the heat waves of summer 2013 in Busan metropolitan area. J. Environ. Sci. Int., 23, 1929-1941 (in Korean with English abstract).   DOI
6 Kim, K. R., M. Kang, J. S. Lee, M. Belorid, C. Cho, and J.-C. Ha, 2018: A test-bed for impact-based forecasts on human health during heat waves by implementing the threshold temperature and probability forecast. Proc. Autumn Meeting of KMS, 193 (in Korean).
7 KMA, 2016: Meteorological Technology & Policy vol. 9 No. 1. Korea Meteorological Administration, 74 pp (in Korean).
8 KMA, 2019: Korea Meteorological Administration. [Available online at http://www.kma.go.kr.].
9 Koppe, C., 2009: The heat health warning system of the German meteorological service. In UmweltMedizinischer InformationsDienst, UMID Special Issue - Climate Change and Health, 39-43.
10 Kovats, R. S., and S. Hajat, 2008: Heat stress and public health: a critical review. Annu. Rev. Public Health, 29, 41-55.   DOI
11 Kysely, J., and J. Kim, 2009: Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave?. Clim. Res., 38, 105-116.   DOI
12 Matzarakis, A., G. Laschewski, and S. Muthers, 2020: The heat health warning system in Germany-Application and warnings for 2005 to 2019. Atmosphere, 11, 170, doi:10.3390/atmos11020170.   DOI
13 MOEJ, 2019: Heat Stress Index: WBGT, Ministry of the Environment of Japan. [Available online at http://www.WBGT.env.go.jp.].
14 McGregor, G. R., P. Bessemoulin, K. Ebi, and B. Menne, 2015: Heat waves and health: Guidance on warning system development. World Meteorological Organization and World Health Organization, 96 pp.
15 Met Office, 2018: UK weather warnings [Available online at https://www.metoffice.gov.uk/weather/warnings-andadvice/uk-warnings].
16 Meteoalarm, 2019: Weather warnings: Europe. [Available online at www.meteoalarm.eu.].
17 NOAA, 2010: National weather service reference guide, National Oceanic and Atmospheric Administration, 133 pp.
18 Saez, M., J. Sunyer, A. Tobias, F. Ballester, and J. M. Anto, 2000: Ischaemic heart disease mortality and weather temperature in Barcelona, Spain. Eur. J. Public Health, 10, 58-63.   DOI
19 NIMS, 2018: Advanced Research on Biometeorology and Urban Meteorology development Research of Advanced Applied Meteorological Instrument. National Institute of Meteorological Sciences, 107 pp (in Korean).
20 Parsons, K., 2002: Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance, 3rd edition, CRC Press, Inc., 635 pp.
21 Sheridan, S. C., and L. S. Kalkstein, 2004: Progress in heat watch-Warning system technology. Bull. Amer. Meteor. Soc., 85, 1931-1942.   DOI
22 Staiger, H., G. Laschewski, and A. Gratz, 2012: The perceived temperature-a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int. J. Biometeorol., 56, 165-176, doi:10.1007/s00484-011-0409-6.   DOI
23 Thorsson, S., F. Lindberg, I. Eliasson, and B. Holmer, 2007: Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol., 27, 1983-1993.   DOI
24 Blazejczyk, K., 2005: MENEX_2005-the updated version of man-environment heat exchange model. 14 pp [Available online at https://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/MENEX_2005.pdf].
25 Urban, A., and J. Kysely, 2014: Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int. J. Environ. Res. Public Health, 11, 952-967, doi:10.3390/ijerph110100952.   DOI
26 Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences, 2nd edition. Academic Press, 648 pp.
27 WMO, 2015: WMO Guideline on multi-hazard impact-based forecast and warning services. World Meteorological Organization, 23 pp.
28 ASHRAE, 2001: ASHRAE Handbook Fundamentals-8. American Society of Heating Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA, 892 pp.
29 Azhar, G. S., D. Mavalankar, A. Nori-Sarma, A. Rajiva, P. Dutta, A. Jaiswal, P. Sheffield, K. Knowlton, and J. J. Hess, 2014: Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One, 9, e91831, doi:10.1371/journal.pone.0091831.   DOI
30 Belorid, M., K. R. Kim, and C. Cho, 2019: Bias correction of short-range ensemble forecasts of daily maximum temperature using decaying average. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-019-00143-8.
31 CMA, 2019: Warning Signal-Heat wave, China Meteorological Administration. [Available online at http://www.cma.gov.cn/en2014/weather/Warnings/WarningSignals/201409/t20140919_261774.html].
32 Blazejczyk, A., K. Blazejczyk, J. Baranowski, and M. Kuchcik, 2018: Heat stress mortality and desired adaptation responses of healthcare system in Poland. Int. J. Biometeorol, 62, 307-318, doi:10.1007/s00484-017-1423-0.   DOI
33 Byon, J.-Y., J.-S. Kim, J.-Y. Kim, B.-C. Choi, Y.-J. Choi, and A. Graetz, 2008a: A Study on the characteristics of perceived temperature over the Korean Peninsula during 2007 summer. Atmosphere, 18, 137-146 (in Korean with English abstract).
34 Byon, J.-Y., J. Kim, B.-C. Choi, and Y.-J. Choi, 2008b: Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer. Atmosphere, 18, 237-248 (in Korean with English abstract).
35 D'Souza, A. W., S. R. Notley, R. D. Meade, and G. P. Kenny, 2019: Intermittent sequential pneumatic compression does not enhance whole-body heat loss in elderly adults during extreme heat exposure. Appl. Physiol. Nutr. Metab., 44, 1383-1386, doi:10.1139/apnm-2019-0364.   DOI
36 Fanger, P. O., 1970: Thermal comfort-Analysis and Applications in Environmental Engineering. Danish Technical Press, 244 pp.
37 Gagge, A. P., A. C., Burton, and H. C. Bazett, 1941: A practical system of units for the description of the heat exchange of man with his environment. Science, 94, 428-430.   DOI
38 Gosling, S. N., J. A. Lowe, G. R. McGregor, M. Pelling, and B. D. Malamud, 2009: Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim. Change, 92, 299-341.   DOI
39 Gagge, A. P., A. P. Fobelets, and L. G. Berglund, 1986: A standard predictive index of human response to the thermal environment. ASHRAE Trans., 92, 709-731.
40 Giannaros, T. M., K. Lagouvardos, V. Kotroni, and A. Matzarakis, 2018: Operational forecasting of humanbiometeorological conditions. Int. J. Biometeorol., 62, 1339-1343, doi:10.1007/s00484-018-1525-3.   DOI
41 Gosling, S. N., and Coauthors, 2014: A glossary for biometeorology. Int. J. Biometeorol., 58, 277-308, doi:10.1007/s00484-013-0729-9.   DOI
42 Guest, C. S., K. Willson, A. J. Woodward, K. Hennessy, L. S. Kalkstein, C. Skinner, and A. J. McMichael, 1999: Climate and mortality in Australia: retrospective study, 1979-1990, and predicted impacts in five major cities in 2030. Clim. Res., 13, 1-15.   DOI
43 Hajat, S., R. S. Kovats, R. W. Atkinson, and A. Haines, 2002: Impact of hot temperatures on death in London: a time series approach. J. Epidemiol. Community Health, 56, 367-372.   DOI
44 Hajat, S., B. G. Armstrong, N. Gouveia, and P. Wilkinson, 2005: Mortality displacement of heat-related deaths-A comparison of Delhi, Sao Paulo, and London. Epidemiology, 16, 613-620.   DOI
45 Heaviside, C., H. Tsangari, A. Paschalidou, S. Vardoulakis, P. Kassomenos, K.E. Georgiou, and E. N. Yamasaki, 2016: Heat-related mortality in Cyprus for current and future climate scenarios. Sci. Total Environ., 569, 627-633, doi:10.1016/j.scitotenv.2016.06.138.   DOI
46 Hoppe, P., 1999: The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol., 43, 71-75, doi:10.1007/s004840050118.   DOI
47 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
48 Huynen, M. M., P. Martens, D. Schram, M. P. Weijenberg, and A. E. Kunst, 2001: The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect., 109, 463-470.   DOI
49 Hwang, M.-K., J. Yun, H. Kim, Y.-J. Kim, Y.-J. Lim, Y.-M. Lee, Y. Kim, E. Yoon, and Y.-K. Kim, 2016: Heat stress assessment and the establishment of a forecast system to provide thermophysiological indices for harbor workers in summer. J. Environ. Health Sci., 42, 92-101, doi:10.5668/JEHS.2016.42.2.92 (in Korean with English abstract).
50 Hwang, M.-K., M.-K., Y.-H. Kang, S. Kim, and Y.-K. Kim, 2019: Investigation of operation and improvement for heat watch warning system to provide health-weather information. J. Environ. Sci. Int., 28, 277-285, doi: 10.5322/JESI.2019.28.2.277 (in Korean with English abstract).   DOI
51 JMA, 2019: Weather Warning/Advisories, Japan Meteorological Agency. [Available online at http://www.data.jma.go.jp/fcd/yoho/data/kouon/index.html].
52 Jendritzky, G., H. Staiger, K. Bucher, A. Gratz, and G. Laschewski, 2000: The perceived temperature: The method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. Proc. Internet Workshop on Windchill, Meteorological Service of Canada.
53 Jendritzky, G., R. de Dear, and G. Havenith, 2012: UTCI-Why another thermal index?. Int. J. Biometeorol, 56, 421-428, doi:10.1007/s00484-011-0513-7.   DOI