• Title/Summary/Keyword: Ensemble model

Search Result 662, Processing Time 0.03 seconds

A Study on the Korean Interest Rate Spread Prediction Model Using the US Interest Rate Spread : SVR-Ensemble (RNN, LSTM, GRU) Model based (미국 금리 스프레드를 이용한 한국 금리 스프레드 예측 모델에 관한 연구 : SVR-앙상블(RNN, LSTM, GRU) 모델 기반)

  • Jeong, Sun-Ho;Kim, Young-Hoo;Song, Myung-Jin;Chung, Yun-Jae;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.1-9
    • /
    • 2020
  • Interest rate spreads indicate the conditions of the economy and serve as an indicator of the recession. The purpose of this study is to predict Korea's interest rate spreads using US data with long-term continuity. To this end, 27 US economic data were used, and the entire data was reduced to 5 dimensions through principal component analysis to build a dataset necessary for prediction. In the prediction model of this study, three RNN models (BasicRNN, LSTM, and GRU) predict the US interest rate spread and use the predicted results in the SVR ensemble model to predict the Korean interest rate spread. The SVR ensemble model predicted Korea's interest rate spread as RMSE 0.0658, which showed more accurate predictive power than the general ensemble model predicted as RMSE 0.0905, and showed excellent performance in terms of tendency to respond to fluctuations. In addition, improved prediction performance was confirmed through period division according to policy changes. This study presented a new way to predict interest rates and yielded better results. We predict that if you use refined data that represents the global economic situation through follow-up studies, you will be able to show higher interest rate predictions and predict economic conditions in Korea as well as other countries.

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image (흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습)

  • Lee, Ye-Sel;Cho, A-Hyun;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).

The Characteristics of Signal versus Noise SST Variability in the North Pacific and the Tropical Pacific Ocean

  • Yeh, Sang-Wook;Kirtman, Ben P.
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.

Epileptic Seizure Detection Using CNN Ensemble Models Based on Overlapping Segments of EEG Signals (뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.587-594
    • /
    • 2021
  • As the diagnosis using encephalography(EEG) has been expanded, various studies have been actively performed for classifying EEG automatically. This paper proposes a CNN model that can effectively classify EEG signals acquired from healthy persons and patients with epilepsy. We segment the EEG signals into sub-signals with smaller dimension to augment the EEG data that is necessary to train the CNN model. Then the sub-signals are segmented again with overlap and they are used for training the CNN model. We also propose ensemble strategy in order to improve the classification accuracy. Experimental result using public Bonn dataset shows that the CNN can detect the epileptic seizure with the accuracy above 99.0%. It also shows that the ensemble method improves the accuracy of 3-class and 5-class EEG classification.

Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea (PNU CGCM 앙상블 예보 시스템의 겨울철 남한 기온 예측 성능 평가)

  • Ahn, Joong-Bae;Lee, Joonlee;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.509-520
    • /
    • 2018
  • The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.

Climate Change Impact Assessments on Korean Water Reseources using Multi-Model Ensemble (MME(Multi-Model Ensemble)를 활용한 국가 수자원 기후변화 영향평가)

  • Bae, Deg-Hyo;Jeong, Il-Won;Lee, Byung-Ju;Jun, Tae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.198-202
    • /
    • 2009
  • 기후변화는 강수와 기온을 변화시켜 수자원에 지대한 영향을 미칠 것으로 알려져 있다. 따라서 이에 대한 안정적인 수자원 관리를 위해서는 기후변화 영향을 정량적으로 평가하는 것이 필요하다. 기본적으로 기후변화에 대한 수자원의 영향을 연구할 때 '온실가스 배출시나리오, GCMs을 통한 기후모의, 시공간적 편차보정을 위한 상세화, 유출모형 적용을 통한 유출시나리오 생산'의 과정을 거친다. 그러나 유출시나리오를 얻기까지 과정에는 각각 불확실성을 가지고 있기 때문에 최종결과의 불확실성은 각 과정을 거치면서 매우 커진다고 할 수 있다. 다양한 배출시나리오, GCM 결과, 유출모형에 대해 단순평균 혹은 가중치를 주는 multi-model ensemble 기법은 각 경우에 따른 값의 범위를 제시할 수있다는 점 때문에 불확실성 평가에서 주로 이용되고 있다. 본 연구에서는 우리나라 5대강 유역 109개 중권역에 대해 multi-model ensemble을 적용하여 기후변화에 의한 수자원 영향을 평가하였다. 1971년에서 2100년까지 120년 기간에 대해 3개의 온실가스 배출시나리오, 13개의 GCMs 결과들을 수집하여 총 39개의 기후시나리오를 이용하였고, 이를 8개의 유출모형에 적용하여 총 312개의 유출시나리오를 생산하였다. 생산된 유출시나리오를 기준시간(1971${\sim}$2000)에 대한 미래의 세 기간(2020s, 2050s, 2080s)으로 나누어 변화율을 분석한 결과 여름철 유출량과 겨울철 유출량이 증가될것으로 나타났으나 겨울철 유출량 전망은 여름철에 비해 불확실성이 큰 것으로 나타났다. 공간적으로는 한강유역이 위치한 북쪽유역이 남쪽에 비해 불확실성이 큰 것으로 나타났다. 결과적으로 유출의 시공간적 편차에 의해 우리나라 수자원은 홍수피해 증가가 예상되었으며, 월별유출량의 변화로 인해 용수확보와 관리에 어려움이 증가할 것으로 전망되었다.

  • PDF

Ensemble Method for Predicting Particulate Matter and Odor Intensity (미세먼지, 악취 농도 예측을 위한 앙상블 방법)

  • Lee, Jong-Yeong;Choi, Myoung Jin;Joo, Yeongin;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Illegal Cash Accommodation Detection Modeling Using Ensemble Size Reduction (신용카드 불법현금융통 적발을 위한 축소된 앙상블 모형)

  • Lee, Hwa-Kyung;Han, Sang-Bum;Jhee, Won-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.93-116
    • /
    • 2010
  • Ensemble approach is applied to the detection modeling of illegal cash accommodation (ICA) that is the well-known type of fraudulent usages of credit cards in far east nations and has not been addressed in the academic literatures. The performance of fraud detection model (FDM) suffers from the imbalanced data problem, which can be remedied to some extent using an ensemble of many classifiers. It is generally accepted that ensembles of classifiers produce better accuracy than a single classifier provided there is diversity in the ensemble. Furthermore, recent researches reveal that it may be better to ensemble some selected classifiers instead of all of the classifiers at hand. For the effective detection of ICA, we adopt ensemble size reduction technique that prunes the ensemble of all classifiers using accuracy and diversity measures. The diversity in ensemble manifests itself as disagreement or ambiguity among members. Data imbalance intrinsic to FDM affects our approach for ICA detection in two ways. First, we suggest the training procedure with over-sampling methods to obtain diverse training data sets. Second, we use some variants of accuracy and diversity measures that focus on fraud class. We also dynamically calculate the diversity measure-Forward Addition and Backward Elimination. In our experiments, Neural Networks, Decision Trees and Logit Regressions are the base models as the ensemble members and the performance of homogeneous ensembles are compared with that of heterogeneous ensembles. The experimental results show that the reduced size ensemble is as accurate on average over the data-sets tested as the non-pruned version, which provides benefits in terms of its application efficiency and reduced complexity of the ensemble.