Browse > Article
http://dx.doi.org/10.14191/Atmos.2018.28.4.509

Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea  

Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University)
Lee, Joonlee (Division of Earth Environmental System, Pusan National University)
Jo, Sera (Division of Earth Environmental System, Pusan National University)
Publication Information
Atmosphere / v.28, no.4, 2018 , pp. 509-520 More about this Journal
Abstract
The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.
Keywords
PNU CGCM; seasonal prediction; ensemble forecast; probabilistic forecast; deterministic forecast;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Seong, M.-G., M.-S. Suh, and C. Kim, 2017: Intercomparison of Prediction Skills of Ensemble Methods Using Monthly Mean Temperature Simulated by CMIP5 Models. Asia-Pac. J. Atmos. Sci., 53, 339-351, doi:10.1007/s13143-017-0039-y.   DOI
2 Sun, J., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the arctic oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.   DOI
3 Takaya, Y., T. Yasuda, T. Ose, and T. Nakaegawa, 2010: Predictability of the mean location of typhoon formation in a seasonal prediction experiment with a coupled general circulation model. J. Meteor. Soc. Japan, 88, 799-812. doi:10.2151/jmsj.2010-502.   DOI
4 Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos., 106, 7183-7192.   DOI
5 Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian Winter Monsoon?. Adv. Atmos. Sci., 27, 855-870, doi:10.1007/s00376-009-9094-3.   DOI
6 Wilks, D. S., 2006: Statistical methods in the atmospheric sciences, International Geophysics Series, vol 91, 2nd edn. Academic Press, San Diego, 627 pp.
7 Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of $HadCM_3$, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61-81.   DOI
8 Guilyardi, E., and Coauthors, 2004: Representing El Nino in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J. Climate, 17, 4623-4629.   DOI
9 Ham, H., D. Won, and Y.-S. Lee, 2017: Performance assessment of weekly ensemble prediction data at seasonal forecast system with high resolution. Atmosphere, 27, 261-276, doi:10.14191/Atmos.2017.27.3.261 (in Korean with English abstract).
10 Huang, X.-Y., 2000: Variational analysis using spatial filters. Mon. Wea. Rev., 128, 2588-2600.   DOI
11 Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous- plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867.   DOI
12 IPCC, 2013: Climate change 2013: the physical science basis: Working group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
13 Jeong, H. I., K. Ashok, B. G. Song, and Y. M. Min, 2008: Experimental 6-month Hindcast and forecast simulation using CCSM3. APCC 2008 Tech. Rep. APEC Climate Center, Korea.
14 Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian Winter Monsoon Index and associated characteristics of the winter monsoon. J. Climate, 17, 711-726.   DOI
15 Jo, S., and J.-B. Ahn, 2014: Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction method. Int. J. Climatol., 35, 3721-3732, doi:10.1002/joc.4232.
16 Jo, S., and J.-B. Ahn, 2017: Statistical forecast of early spring precipitation over South Korea using multiple linear regression. J. Climate Res., 12, 53-71, doi: 10.14383/cri.2017.12.1.53 (in Korean with English abstract).   DOI
17 Lim, E.-P., H. H. Hendon, S. Langford, and O. Alves, 2012: Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051, 23 pp [Available online at http://www.cawcr.gov.au/technicalreports/CTR_051.pdf.].
18 Lu, C., H. Yuan, B. E. Schwartz, and S. G. Benjamin, 2007: Short-range numerical weather prediction using time-lagged ensembles. Wea. Forecasting, 22, 580-595.   DOI
19 Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951-957.   DOI
20 MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084.   DOI
21 Min, Y.-M., V. N. Kryjov, and S. M. Oh, 2014: Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983- 2003) and real-time forecasts (2008-2013). J. Geophys. Res. Atmos., 119, 12132-12150, doi:10.1002/2014JD022230.   DOI
22 Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech Memo 656, 51 pp [Available online at https://www. ecmwf.int/sites/default/files/elibrary/2011/11209-newecmwf-seasonal-forecast-system-system-4.pdf.].
23 Oh, S.-G., and M.-S. Suh 2017: Comparison of projection skills of deterministic ensemble methods using pseudosimulation data generated from multivariate Gaussian distribution, Theor. Appl. Climatol., 129, 243-262, doi:10.1007/s00704-016-1782-1.   DOI
24 Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual. Princeton, USA: NOAA/Geophysical Fluid Dynamics Laboratory 08542, 708 pp [Available online at https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/mom3_manual.pdf.].
25 Ahn, J.-B., S.-B. Lee, and S.-B. Ryoo, 2012: Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1. Atmosphere, 22, 455-464 (in Korean with English abstract).   DOI
26 Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015.   DOI
27 Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the east Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 2605-2619.   DOI
28 Ahn, J.-B., and J. A. Lee, 2001: Numerical study on the role of sea-ice using ocean general circulation model. J. Korean Soc. Oceanogr., 6, 225-233 (in Korean with English abstract).
29 Ahn, J.-B., and J. Lee, 2015: Comparative Study on the seasonal predictability dependency of boreal winter 2 m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10. 14191/Atmos.2015.25.2.353 (in Korean with English abstract).   DOI
30 Ahn, J.-B., and J. Lee, 2016: A new multi-model ensemble method using nonlinear genetic algorithm: An application to boreal winter surface air temperature and precipitation prediction. J. Geophys. Res. Atmos., 121, 9263-9277, doi:10.1002/2016JD025151.   DOI
31 Brankovic, C., T. N. Palmer, F. Molteni, S. Tibaldi, and U. Cubasch, 1990: Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting. Quart. J. Roy. Meteor. Soc., 116, 867-912.   DOI
32 Alves, O., M. A. Balmaseda, D. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647-667.   DOI
33 Balmaseda, M., and D. Anderson, 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701.
34 Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3). J. Climate, 11, 1307-1326.   DOI
35 Chan, J. C. L., and C. Y. Li, 2004: The East Asia winter monsoon. Chang, C.P., Ed., East Asian Monsoon, World Scientific Publishing Co. Pet. Ltd., 54-106.
36 Chang, C.-P., Z. Wang, and H. Hendon, 2006: The Asian winter monsoon. Wang, B., Ed., The Asian Monsoon, Praxis Springer Berlin, 89-127.
37 Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast verification: a practitioner's guide in atmospheric science. Wiley and Sons, 254 pp.
38 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643.   DOI
39 Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version 2. J. Climate, 17, 3666-3682.   DOI
40 Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR community climate model (CCM3). NCAR Tech. Note. NCAR/TN-420+STR, 152 pp.
41 Lee, J., J.-B. Ahn, M.-P. Jung, and K.-M. Shim, 2017: A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing. Korean J. Remote Sens., 33, 661-676, doi:10.7780/kjrs.2017.33.5.2.6 (in Korean with English abstract).   DOI
42 Kim, H.-J., and J.-B. Ahn, 2015: Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM. J. Climate, 28, 8951-8967.   DOI
43 KMA, 2012: Construction of the abnormal climate probability forecast system using the joint seasonal forecast system between KMA and Met Office. Korean Meteorological Administration, Seoul, 97 pp.
44 KMA, 2018: 2017 abnormal climate report, Korean Meteorological Administration, 218 pp [Available online at http://www.climate.go.kr/home/cc_data/2018/2017_abnormal_climate_report.pdf.].
45 Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-B. Byun, and C. H. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecast system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).   DOI
46 RDA, 2014: The Construction of Agrometeorological Information and Climate Modeling in Major Crop Production Area, Rural Development Administration, 138 pp [Available online at http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201400011432].
47 RDA, 2018: Production of Dissemination of Agro-climate Information in Major Crop Production Areas. Rural Development Administration, 79 pp [Available online at http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201800043070].
48 Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185-2208, doi:10.1175/JCLI-D-12-00823.1.   DOI