Browse > Article

The Characteristics of Signal versus Noise SST Variability in the North Pacific and the Tropical Pacific Ocean  

Yeh, Sang-Wook (Ocean Circulation and Climate Research Division, KORDI)
Kirtman, Ben P. (Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, George Mason University)
Publication Information
Ocean Science Journal / v.41, no.1, 2006 , pp. 1-10 More about this Journal
Abstract
Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.
Keywords
North Pacific; Equatorial Pacific; signal and noise; interactive ensemble model; SST variability;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Davis, R.E. 1976. Predictability of sea surface temperature anomalies and sea level pressure anomalies over the North Pacific ocean. J. Phys. Oceanogr., 6, 249-266   DOI
2 Delworth, T. 1996. North Atlantic interannual variability in a coupled ocean-atmosphere model. J. Climate, 9, 2356-2375   DOI   ScienceOn
3 Hasselmann, K. 1976. Stochastic climate models: Part I. Theory. Tellus, 28, 473-485   DOI
4 Harzallah, A. and R. Sadourny. 1995. Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J. Climate, 8, 474-495   DOI   ScienceOn
5 Kinter, J.L. III, J. Shukla, L. Marx, and E.K. Schneider. 1988. A simulation of winter and summer circulations with the NMC global spectral model. J. Atmos. Sci., 45, 2468-2522
6 Kirtman, B.P., Y. Fan, and E.K. Schneider. 2002. The COLA global coupled and anomaly coupled ocean-atmosphere GCM. J. Climate, 15, 2301-2320   DOI   ScienceOn
7 Kirtman, B.P. and S. Zebiak. 1997. ENSO simulation and prediction with a hybrid coupled model. Mon. Wea. Rev., 125, 2620- 2641   DOI   ScienceOn
8 Nakamura, H., G. Lin, and T. Yamagata. 1997. Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 2215-2225   DOI   ScienceOn
9 Pacanowski, R.C., K. Dixon, and A. Rosati. 1993. The GFDL modular ocean model users guide, version 1.0. GFDL Ocean Group Tech Rep. No. 2. 77 p
10 Redi, M.H. 1982. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1155-1158
11 Robertson, A.W. 1996. Interdecadal variability over the North Pacific in a multi-century climate simulation. Climate Dyn., 12, 227-241   DOI
12 Rosati, A. and K. Miyakoda. 1988. A general circulation model for upper ocean circulation. J. Phys. Oceanogr., 18, 1601-1626   DOI
13 Zhang, Y., J.M. Wallace, and D.S. Battisti. 1997. ENSO-like interdecadal variability: 1900-93. J. Climate, 10, 1004-1020   DOI
14 Schneider, E.K. 2002. Causes of differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15, 2301-2320   DOI   ScienceOn
15 Seager, R., Y. Kushnir, N.H. Naik, M.A. Cane, and J. Miller. 2001. Wind-driven shifts in the latitude of the Kuroshio- Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 15, 4249-4265
16 Tanimoto, Y., N. Iwasaka, and K. Hanawa. 1997. Relationships between sea surface temperature, the atmospheric circulation and air-sea fluxes on multiple timescales. J. Meteor. Soc. Jpn., 75, 831-849   DOI
17 DeWitt, D.G. and E.K. Schneider. 1996. The Earth radiation budget as simulated by the COLA GCM. COLA Tech. Rep. 35. 39 p
18 Alexander, M.A. 1992. Midlatitude atmosphere-ocean interaction during El Nino, I. The North Pacific Ocean. J. Climate, 5, 944-958   DOI
19 Shukla, J. and co-authors. 2000. Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81, 2593-2606   DOI   ScienceOn
20 Reynolds, R. and T. M. Smith. 1994. Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7, 929-948   DOI   ScienceOn
21 Saravanan, R. and J.C. McWilliams. 1995. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model. J. Climate, 8, 2296-2323   DOI   ScienceOn
22 Kiehl, J.T., J.J. Hack, and B.P. Briegleb. 1994. The simulated earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophy. Res., 99, 20815-20827   DOI
23 Kirtman, B.P. and J. Shukla. 2002. Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29, 1029-1032   DOI
24 Miyakoda, K. and J. Sirutis. 1977. Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transport. Beitr. Phys. Atmos., 50, 445-480
25 Frankignoul, C. and K. Hasselmann. 1977. Stochastic climate models: Part I. Application to sea surface temperature anomalies and thermocline variability. Tellus, 29, 289-305   DOI
26 Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363-403   DOI   ScienceOn
27 Rowell, D.P. 1998. Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109-120   DOI   ScienceOn
28 Briegleb, B.P. 1992. Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geopys. Res., 97, 7603-7612   DOI
29 DeWitt, D.G. 1996. The effect of the cumulus convection on the climate of the COLA general circulation model. COLA Tech. Rep. 27. 69 p
30 Hoerling, M.P., A. Kumar, and M. Zhong. 1977. El Nino, La Nina, and the nonlinearity of their teleconnections. J. Climate, 10, 1769-1786   DOI   ScienceOn
31 Zwiers, F.W. 1996. Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12, 825-847   DOI
32 Harshvardhan, R.R. Davis, D.A. Randall, and T.G. Corsetti. 1987. A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016   DOI
33 Pacanowski, R.C. and S.M. Griffies. 1998. MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory. 638 p
34 Straus D.M. and J. Shukla. 2000. Distinguishing between the SST-forced variability and internal variability in mid-latitudes: Analysis of observation and GCM simulations. Quart. J. Roy. Meteorol. Soc., 126, 2323-2350   DOI   ScienceOn
35 Miller, A.J., D.R. Cayan, and W.B. White. 1998. A westwardintensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11, 3112-3127   DOI   ScienceOn
36 Hannachi, A. 2001. Toward a nonlinear identification of the atmospheric response to ENSO. J. Climate, 14, 2138-2149   DOI   ScienceOn
37 Barnett, T.P., D.W. Pierce, R. Saravanan, N. Schneider, D. Dommenget, and M. Latif. 1999. Origins of the midlatitude Pacific decadal variability. Geophys. Res. Lett., 26, 1454-1456
38 Gent, P.R. and J.C. McWilliams. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150-155   DOI
39 Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99-164   DOI
40 Yeh, S.-W. and Ben P. Kirtman. 2004. The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn., 22, 721-732   DOI
41 Saravanan, R. 1998. Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies and the NCAR Climate System Model. J. Climate, 11, 1386- 1404   DOI   ScienceOn
42 Moorthi, S. and M.J. Suarez. 1992. Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978-1002   DOI
43 Battisti, D.S., U.S. Bhatt, and M.A. Alexander. 1995. A modeling study of interannual variability in the wintertime North Atlantic Ocean. J. Climate, 8, 3067-3083   DOI
44 Latif, M. and T.P. Barnett. 1994. Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634-637   DOI   ScienceOn