• 제목/요약/키워드: Ensemble Learning

검색결과 380건 처리시간 0.03초

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Stacking Ensemble Learning을 활용한 블록 탑재 시수 예측 (A Study on the Work-time Estimation for Block Erections Using Stacking Ensemble Learning)

  • 권혁천;유원선
    • 대한조선학회논문집
    • /
    • 제56권6호
    • /
    • pp.488-496
    • /
    • 2019
  • The estimation of block erection work time at a dock is one of the important factors when establishing or managing the total shipbuilding schedule. In order to predict the work time, it is a natural approach that the existing block erection data would be used to solve the problem. Generally the work time per unit is the product of coefficient value, quantity, and product value. Previously, the work time per unit is determined statistically by unit load data. However, we estimate the work time per unit through work time coefficient value from series ships using machine learning. In machine learning, the outcome depends mainly on how the training data is organized. Therefore, in this study, we use 'Feature Engineering' to determine which one should be used as features, and to check their influence on the result. In order to get the coefficient value of each block, we try to solve this problem through the Ensemble learning methods which is actively used nowadays. Among the many techniques of Ensemble learning, the final model is constructed by Stacking Ensemble techniques, consisting of the existing Ensemble models (Decision Tree, Random Forest, Gradient Boost, Square Loss Gradient Boost, XG Boost), and the accuracy is maximized by selecting three candidates among all models. Finally, the results of this study are verified by the predicted total work time for one ship among the same series.

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Social Media Data Analysis Trends and Methods

  • Rokaya, Mahmoud;Al Azwari, Sanaa
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.358-368
    • /
    • 2022
  • Social media is a window for everyone, individuals, communities, and companies to spread ideas and promote trends and products. With these opportunities, challenges and problems related to security, privacy and rights arose. Also, the data accumulated from social media has become a fertile source for many analytics, inference, and experimentation with new technologies in the field of data science. In this chapter, emphasis will be given to methods of trend analysis, especially ensemble learning methods. Ensemble learning methods embrace the concept of cooperation between different learning methods rather than competition between them. Therefore, in this chapter, we will discuss the most important trends in ensemble learning and their applications in analysing social media data and anticipating the most important future trends.

지역 기반 분류기의 앙상블 학습 (Ensemble Learning of Region Based Classifiers)

  • 최성하;이병우;양지훈
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.303-310
    • /
    • 2007
  • 기계학습에서 분류기틀의 집합으로 구성된 앙상블 분류기는 단일 분류기에 비해 정확도가 높다는 것이 입증되어왔다. 본 논문에서는 새로운 앙상블 학습으로서 데이터의 지역 기반 분류기들의 앙상블 학습을 제시하여 기존의 앙상블 학습과의 비교를 통해 성능을 검증하고자 한다. 지역 기반 분류기의 앙상블 학습은 데이터의 분포가 지역에 따라 다르다는 점에 착안하여 학습 데이터를 분할하여 해당하는 지역에 기반을 둔 분류기들을 만들어 나간다. 이렇게 만들어진 분류기들로부터 지역에 따라 가중치를 둔 투표를 적용하여 앙상블 방법을 이끌어낸다. 본 논문에서 제시한 앙상블 분류기의 성능평가를 위해 단일 분류기와 기존의 앙상블 분류기인 배깅과 부스팅 등을 UCI Machine Learning Repository에 있는 11개의 데이터 셋으로 정확도 비교를 하였다. 그 결과 새로운 앙상블 방법이 기본 분류기로 나이브 베이즈와 SVM을 사용했을 때 다른 방법보다 좋은 성능을 보이는 것을 알 수 있었다.

Asymmetric Semi-Supervised Boosting Scheme for Interactive Image Retrieval

  • Wu, Jun;Lu, Ming-Yu
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.766-773
    • /
    • 2010
  • Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.

Ensemble Deep Learning Features for Real-World Image Steganalysis

  • Zhou, Ziling;Tan, Shunquan;Zeng, Jishen;Chen, Han;Hong, Shaobin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4557-4572
    • /
    • 2020
  • The Alaska competition provides an opportunity to study the practical problems of real-world steganalysis. Participants are required to solve steganalysis involving various embedding schemes, inconsistency JPEG Quality Factor and various processing pipelines. In this paper, we propose a method to ensemble multiple deep learning steganalyzers. We select SRNet and RESDET as our base models. Then we design a three-layers model ensemble network to fuse these base models and output the final prediction. By separating the three colors channels for base model training and feature replacement strategy instead of simply merging features, the performance of the model ensemble is greatly improved. The proposed method won second place in the Alaska 1 competition in the end.

Two Stage Deep Learning Based Stacked Ensemble Model for Web Application Security

  • Sevri, Mehmet;Karacan, Hacer
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.632-657
    • /
    • 2022
  • Detecting web attacks is a major challenge, and it is observed that the use of simple models leads to low sensitivity or high false positive problems. In this study, we aim to develop a robust two-stage deep learning based stacked ensemble web application firewall. Normal and abnormal classification is carried out in the first stage of the proposed WAF model. The classification process of the types of abnormal traffics is postponed to the second stage and carried out using an integrated stacked ensemble model. By this way, clients' requests can be served without time delay, and attack types can be detected with high sensitivity. In addition to the high accuracy of the proposed model, by using the statistical similarity and diversity analyses in the study, high generalization for the ensemble model is achieved. Within the study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-HTTP is created in accordance with the real-world situations. The performance of the proposed WAF model is compared to state-of-the-art deep learning models and previous studies using the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively.

인공지능을 활용한 기계학습 앙상블 모델 개발 (Development of Machine Learning Ensemble Model using Artificial Intelligence)

  • 이근원;원윤정;송영범;조기섭
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.211-217
    • /
    • 2021
  • To predict mechanical properties of secondary hardening martensitic steels, a machine learning ensemble model was established. Based on ANN(Artificial Neural Network) architecture, some kinds of methods was considered to optimize the model. In particular, interaction features, which can reflect interactions between chemical compositions and processing conditions of real alloy system, was considered by means of feature engineering, and then K-Fold cross validation coupled with bagging ensemble were investigated to reduce R2_score and a factor indicating average learning errors owing to biased experimental database.