• 제목/요약/키워드: Enhanced phosphorus removal

검색결과 73건 처리시간 0.017초

연안저질 환경 개선을 위한 유용 미생물제제 및 산화제의 사용에 따른 환경변화 및 효율성 관찰 (Environmental Change and Its Enhancement of a Bay Sediment by Using Useful Microbial and Chemical Treatments)

  • 조대철;배환진;이정렬;권성현
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1355-1362
    • /
    • 2010
  • This study was carried out in order to observe how the bay sediment would be changed with microbial treatments and a chemical oxidant like $CaO_2$. The sediment during the treatments was analyzed in terms of pH, ORP, volatile organics content, COD, AVS, T-N, and T-P. With $CaO_2$ treatment, pH was kept over 9.66 and ORP ranged from +4.70~+46.0, which meant an aerobic state meanwhile with the microbial treatment those were worse. In addition the chemical treatment showed better environmental index values than the microbial one: volatile organics content and COD values in the former were 12.9% and 37.9% while those in the latter were 4.5% and 18.7%, respectively. AVS and T-P were 71.1% and 100% versus 56.5% and 85.8%, respectively. However, the microbial treatment was better for T-N(66% higher). On the other hand, both treatment at a time enhanced all the environmental indices but COD meantime pH and ORP values were lower than with the chemical treatment only. Thus additional input of an oxygen generator like $CaO_2$ could improve the environmental state of a bay sediment where the biological treatment is going on.

Analysis of Microbial Communities Using Culture-dependent and Culture-independent Approaches in an Anaerobic/Aerobic SBR Reactor

  • Lu Shipeng;Park Min-Jeong;Ro Hyeon-Su;Lee Dae-Sung;Park Woo-Jun;Jeon Che-Ok
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.155-161
    • /
    • 2006
  • Comparative analysis of microbial communities in a sequencing batch reactor which performed enhanced biological phosphorus removal (EBPR) was carried out using a cultivation-based technique and 16S rRNA gene clone libraries. A standard PCR protocol and a modified PCR protocol with low PCR cycle was applied to the two clone libraries of the 16S rRNA gene sequences obtained from EBPR sludge, respectively, and the resulting 424 clones were analyzed using restriction fragment length polymorphisms (RFLPs) on 16S rRNA gene inserts. Comparison of two clone libraries showed that the modified PCR protocol decreased the incidence of distinct fragment patterns from about 63 % (137 of 217) in the standard PCR method to about 34 % (70 of 207) under the modified protocol, suggesting that just a low level of PCR cycling (5 cycles after 15 cycles) can significantly reduce the formation of chimeric DNA in the final PCR products. Phylogenetic analysis of 81 groups with distinct RFLP patterns that were obtained using the modified PCR method revealed that the clones were affiliated with at least 11 phyla or classes of the domain Bacteria. However, the analyses of 327 colonies, which were grouped into just 41 distinct types by RFLP analysis, showed that they could be classified into five major bacterial lineages: ${\alpha},\;{\beta},\;{\gamma}-$ Proteobacteria, Actinobacteria, and the phylum Bacteroidetes, which indicated that the microbial community yielded from the cultivation-based method was still much simpler than that yielded from the PCR-based molecular method. In this study, the discrepancy observed between the communities obtained from PCR-based and cultivation-based methods seems to result from low culturabilities of bacteria or PCR bias even though modified culture and PCR methods were used. Therefore, continuous development of PCR protocol and cultivation techniques is needed to reduce this discrepancy.

Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment

  • Park, Seong-Joo;Yoon, Jerng-Chang;Shin, Kwang-Soo;Kim, Eung-Ho;Yim, Soo-Bin;Cho, Yeon-Je;Sung, Gi-Moon;Lee, Dong-Geun;Kim, Seung-Bum;Lee, Dong-Uk;Woo, Sung-Hoon;Koopman, Ben
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.113-121
    • /
    • 2007
  • The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.