• Title/Summary/Keyword: Enhanced Rg3

Search Result 49, Processing Time 0.031 seconds

Enhanced Rg3 negatively regulates Th1 cell responses

  • Cho, Minkyoung;Choi, Garam;Shim, Inbo;Chung, Yeonseok
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods: Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve $CD4^+$ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma ($IFN{\gamma}$) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.

Potential Effects of Microglial Activation Induced by Ginsenoside Rg3 in Rat Primary Culture: Enhancement of Type A Macrophage Scavenger Receptor Expression

  • Joo, Seong-Soo;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1164-1169
    • /
    • 2005
  • Brain microglia are phagocytic cells that are the major inflammatory response cells of the central nervous system and widely held to play important pathophysiologic roles in Alzheimer's disease (AD) in both potentially neurotoxic responses and potentially beneficial phagocytic responses. In the study, we examined whether ginsonoside Rg3, a by-product of red ginseng, enhances the microglial phagocytosis of $A{\beta}$. We found that Rg3 promoted $A{\beta}$ uptake, internalization, and digestion. Increased maximal $A{\beta}$ uptake was observed at 4 and 8 h after Rg3 pretreatment (25 ${\mu}g/mL$), and the internalized $A{\beta}$ was almost completely digested from cells within 36 h when pretreated with Rg3 comparing with single non-Rg3-treated groups. The expression of MSRA (type A MSR) was also up-regulated by Rg3 treatment in a dose- and time-dependent manner which was coincidently identified in western blots for MSRA proteins in cytosol. These results indicate that microglial phagocytosis of $A{\beta}$ may be enhanced by Rg3 and the effect of Rg3 on promoting clearance of $A{\beta}$ may be related to the MSRA-associated action of Rg3. Thus, stimulation of the MSRA might contribute to the therapeutic potentials of Rg3 in microglial phagocytosis and digestion in the treatment of AD.

Ginsenoside Rg1 augments oxidative metabolism and anabolic response of skeletal muscle in mice

  • Jeong, Hyeon-Ju;So, Hyun-Kyung;Jo, Ayoung;Kim, Hye-Been;Lee, Sang-Jin;Bae, Gyu-Un;Kang, Jong-Sun
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.475-481
    • /
    • 2019
  • Background: The ginsenoside Rg1 has been shown to exert various pharmacological activities with health benefits. Previously, we have reported that Rg1 promoted myogenic differentiation and myotube growth in C2C12 myoblasts. In this study, the in vivo effect of Rg1 on fiber-type composition and oxidative metabolism in skeletal muscle was examined. Methods: To examine the effect of Rg1 on skeletal muscle, 3-month-old mice were treated with Rg1 for 5 weeks. To assess muscle strength, grip strength tests were performed, and the lower hind limb muscles were harvested, followed by various detailed analysis, such as histological staining, immunoblotting, immunostaining, and real-time quantitative reverse transcription polymerase chain reaction. In addition, to verify the in vivo data, primary myoblasts isolated from mice were treated with Rg1, and the Rg1 effect on myotube growth was examined by immunoblotting and immunostaining analysis. Results: Rg1 treatment increased the expression of myosin heavy chain isoforms characteristic for both oxidative and glycolytic muscle fibers; increased myofiber sizes were accompanied by enhanced muscle strength. Rg1 treatment also enhanced oxidative muscle metabolism with elevated oxidative phosphorylation proteins. Furthermore, Rg1-treated muscles exhibited increased levels of anabolic S6 kinase signaling. Conclusion: Rg1 improves muscle functionality via enhancing muscle gene expression and oxidative muscle metabolism in mice.

Ginsenoside Rg1 promotes browning by inducing UCP1 expression and mitochondrial activity in 3T3-L1 and subcutaneous white adipocytes

  • Lee, Kippeum;Seo, Young-Jin;Song, Ji-Hyoen;Chei, Sungwoo;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.589-599
    • /
    • 2019
  • Background: Panax ginseng Meyer is known as a conventional herbal medicine, and ginsenoside Rg1, a steroid glycoside, is one of its components. Although Rg1 has been proved to have an antiobesity effect, the mechanism of this effect and whether it involves adipose browning have not been elucidated. Methods: 3T3-L1 and subcutaneous white adipocytes from mice were used to access the thermogenic effect of Rg1. Adipose mitochondria and uncoupling protein 1 (UCP1) expression were analyzed by immunofluorescence. Protein level and mRNA of UCP1 were also evaluated by Western blotting and realtime polymerase chain reaction, respectively. Results: Rg1 dramatically enhanced expression of brown adipocyte-especific markers, such as UCP1 and fatty acid oxidation genes, including carnitine palmitoyltransferase 1. In addition, it modulated lipid metabolism, activated 5' adenosine monophosphate (AMP)-activated protein kinase, and promoted lipid droplet dispersion. Conclusions: Rg1 increases UCP1 expression and mitochondrial biogenesis in 3T3-L1 and subcutaneous white adipose cells isolated from C57BL/6 mice. We suggest that Rg1 exerts its antiobesity effects by promoting adipocyte browning through activation of the AMP-activated protein kinase pathway.

The Change of Ginsenoside Composition in Notoginseng Root(Panax notoginseng) Extract by the Microwave and Vinegar Process (초단파 및 식초 처리에 의한 삼칠삼 추출물의 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Cho, Soon Hyun;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.320-325
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of Notoginseng root(Panax notoginseng) extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$, $Rk_1$ and $Rh_4$, a special component of Red and Black ginseng(Panax ginseng). Chemical transformation from ginseng saponin to prosapogenin was analyzed by the HPLC. Extracts of Notoginseng root was processed under several treatment conditions including microwave and vinegar(about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 7.6% at 15 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MPN-15 indicate that the microwave and vinegar(about 14% acidity) processed Notoginseng root extracts that had gone through 15-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$(7.639%), $Rg_5$(6.061%), $Rk_1$(1.516%) and $Rh_4$(1.599). It is thought that such results provide basic information in preparing Notoginseng root extracts with functionality enhanced.

Memory Enhancing and Neuroprotective Effects of Selected Ginsenosides

  • Sao Hai Ying;Zhang Jing;Yeo Soo Jeong;Myung Chang Seon;Kim Hyang Mi;Kim Jong Moon;Park Jeong Hill;Cho Jung Sook;Kang Jong Seong
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.335-342
    • /
    • 2005
  • The effects of ginsenosides Rg$_3$(R) , Rg$_3$(S) and Rg$_5$/Rk$_1$ (a mixture of Rg$_5$ and Rk$_1$ 1:1, w/w), which are components isolated from processed Panax ginseng C.A. Meyer (Araliaceae), on memory dysfunction were examined in mice using a passive avoidance test. The ginsenosides Rg3(R), Rg3(S) or Rg$_5$/Rk$_1$, when orally administered for 4 days, significantly ameliorated the memory impairment induced by the single oral administration of ethanol. The memory impairment induced by the intraperitoneal injection of scopolamine was also significantly recovered by ginsenosides Rg3(S) and Rg$_5$/Rk$_1$. Among the three ginsenosides tested in this study, Rg$_5$/Rk$_1$ enhanced the memory function of mice most effectively in both the ethanol­and scopolamine-induced amnesia models. Moreover, the latency period of the Rg$_5$/Rk$_1$­treated mice was 1.2 times longer than that of the control (no amnesia) group in both models, implying that Rg$_5$/Rk$_1$ may also exert beneficial effects in the normal brain. We also evaluated the effects of these ginsenosides on the excitotoxic and oxidative stress-induced neuronal cell damage in primary cultured rat cortical cells. The excitotoxicity induced by glutamate or N­methyl-D-aspartate (NMDA) was dramatically inhibited by the three ginsenosides. Rg$_3$(S) and Rg$_5$/Rk$_1$ exhibited a more potent inhibition of excitotoxicity than did Rg$_3$(R). In contrast, these ginsenosides were all ineffective against the H$_2$O$_2$- or xanthine/xanthine oxidase-induced oxidative neuronal damage. Taken together, these results indicate that ginsenosides Rg$_3$(S) and Rg$_5$/Rk$_1$ significantly reversed the memory dysfunction induced by ethanol or scopolamine, and their neuroprotective actions against excitotoxicity may be attributed to their memory enhancing effects.

The Change of Ginsenoside Composition in White Ginseng and Fine White Ginseng Extract by the Microwave and Vinegar Process (백삼 및 백미삼 추출물의 초단파 및 식초 처리에 의한 인삼 사포닌 성분 변화)

  • Jo, Hee Kyung;Im, Byung Ok;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of ginseng extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$ and $Rk_1$, a special component of Red ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of White ginseng (Panax ginseng) and Fine White ginseng were processed under several treatment conditions including microwave and vinegar (about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 0.6% at 4 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MWG-4 indicate that the Microwave and vinegar processed white ginseng extracts (about 14% acidity) that had gone through 4-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$ (0.626%), $Rg_5$ (0.514%) and $Rk_1$ (0.220%). Results of treatments with MFWG-5 showed that the Fine White ginseng extracts that had been processed with microwave and vinegar (about 14% acidity) for 5 minutes were found to contain the largest amount of ginsenoside $Rg_3$ (4.484%), $Rg_5$ (3.192%) and $Rk_1$ (1.684%). It is thought that such results provide basic information in preparing White ginseng and Fine White ginseng extracts with functionality enhanced.

20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways

  • Honglin Xu;Haifeng Miao;Guanghong Chen;Guoyong Zhang;Yue Hua;Yuting Wu;Tong Xu;Xin Han;Changlei Hu;Mingjie Pang;Leyi Tan;Bin Liu;Yingchun Zhou
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.743-754
    • /
    • 2023
  • Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-β1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78×10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 downregulated the TGF-β1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.

A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts

  • Lee, Hyunji;Hong, Youngeun;Tran, Quangdon;Cho, Hyeonjeong;Kim, Minhee;Kim, Chaeyeong;Kwon, So Hee;Park, SungJin;Park, Jongsun;Park, Jisoo
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.431-441
    • /
    • 2019
  • Background: The efficacy of ginseng, the representative product of Korea, and its chemical effects have been well investigated. The ginsenoside RG3 has been reported to exhibit apoptotic, anticancer, and antidepressant-like effects. Methods: In this report, the putative effect of RG3 on several cellular function including cell survival, differentiation, development and aging process were evaluated by monitoring each specific marker. Also, mitochondrial morphology and function were investigated in ultraviolet (UV)-irradiated normal human dermal fibroblast cells. Results: RG3 treatment increased the expression of extracellular matrix proteins, growth-associated immediate-early genes, and cell proliferation genes in UV-irradiated normal human dermal fibroblast cells. And, RG3 also resulted in enhanced expression of antioxidant proteins such as nuclear factor erythroid 2-related factor-2 and heme oxygenase-1. In addition, RG3 affects the morphology of UV-induced mitochondria and plays a role in protecting mitochondrial dysfunction. Conclusioin: RG3 restores mitochondrial adenosine triphosphate (ATP) and membrane potential via its antioxidant effects in skin cells damaged by UV irradiation, leading to an increase in proteins linked with the extracellular matrix, cell proliferation, and antioxidant activity.

Production of Red Ginseng Specific Ginsenosides $(Rg_2, Rg_3, Rh_1 and Rh_2)$ from Agrobacterium-transformed hairy Roots of Panax ginseng by Heat Treatment

  • Yang, Deok-Chun;Yang, Kye-Jin;Park, Yong-Eui
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • It was reported that Red ginseng contains specific ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$, which show various pharmacological effects. However, production of these specific ginsenosides from Red ginseng is not commercially applicable because of high cost of the raw material, roots. This work was carried out to examine the production of Red ginseng specific ginsenosides from Agrobacterium-transformed hairy roots. Hairy roots were induced from 3 year-old root segment of Korean ginseng (Panax ginseng C.A. Meyer) after infection with Agrobacterium rhizogenes A4. Among many lines of hairybroots, KGHR-8A was selected. Steam heat treatment of hairy roots was resulted in the changes of ginsenoside composition. Eleven ginsenosides were detected in heat-treated hairy roots but eight in freeze dried hairy roots. In heat treated hairy root, content of ginsenoside-Rb$_1$,Rb$_2$,Rc, Rd, Re, Rf, and Rg$_1$were decreased compared to those of freeze dried hairy roots. However, heat treatment strongly enhanced the amount of Red ginseng specific ginsenogides (ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$). Amounts of ginsenoside-Rg$_3$,-Rh$_1$and -Rh$_2$ in heat-treated hairy roots were 2.58, 3.62 and 1.08 mg/g dry wt, respectively, but these were detected as trace amount in hairy roots without heat treatment. Optimum condition of heat treatment for the production of Red ginseng specific ginsenoside was 2 h at 105$^{\circ}C$. This result represents that Red ginseng specific ginsenoside can be producted from hairy roots by steam heat treatment.

  • PDF