• Title/Summary/Keyword: Enhanced Fuzzy ART Algorithm

검색결과 17건 처리시간 0.018초

개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구 (A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm)

  • 임은경;김광백
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.433-444
    • /
    • 2000
  • 본 논문은 개선된 퍼지 ART알고리즘을 이용한 차량 번호판 인식에 대한 연구이다. 차량 영상에서 번호판 영역을 추출하기 위해 수평·수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 SOFM을 적용한 윤곽선(Contour)추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 개선된 퍼지 ART알고리즘을 사용한다. 본 논문에서 제안한 퍼지 ART알고리즘은 클러스터링 하는데 있어서 임의의 패턴과 저장된 패턴사이의 불일치 허용도를 나타내는 유사도(vigilance threshold)를 동적으로 설정함으로써 기존의 퍼지 ART 알고리즘을 개선한다. 추출 실험 결과, 수평·수직 에지의 형태학적 정보를 이용한 추출 방법이 RGB와 HSI 컬러 정보를 이용한 추출 방법보다 추출율이 개선되었다. 인식 결과에서도 개선된 퍼지 ART알고리즘이 기존의 퍼지 ART 알고리즘과 SOFM 알고리즘보다 인식율이 향상되었다.

  • PDF

효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image)

  • 김광백
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.486-492
    • /
    • 2003
  • 퍼지 ART 알고리즘에서 경계 변수는 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 패턴과 저장 패턴 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴을 저장 패턴의 카테고리로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정한다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식률을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용하는 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 확인하기 위해서 운송 컨테이너 영상을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

윤곽선 추적 알고리즘과 개선된 ART1을 이용한 영문 명함 인식에 관한 연구 (A Study on the Recognition of an English Calling Card by using Contour Tracking Algorithm and Enhanced ART1)

  • 김광백;김철기;김정원
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.105-115
    • /
    • 2002
  • 본 논문에서는 4 방향 윤곽선 추적 알고리즘(contour tracking algorithm)과 개선된 ART1을 이용한 영문 명함인식 방법을 제안한다. 영문 명함 영상에서 문자열 추출은 영상을 3배로 축소하여 수평 스미어링 기법(smearing method)과 4방향 윤곽선 추적 방법을 적용하여 문자열 후보 영역을 추출하고 수평 및 수직의 비율과 면적을 이용하여 문자열 영역과 비문자열 영역을 구분하였다. 추출된 문자열 영역에서 개별 문자 추출은 수평 스미링 기법과 윤곽선 추적 알고리즘을 이용하여 추출하였고 개별 문자들의 인식은 ART1 알고리즘을 개선하여 인식에 적용하였다. 본 논문에서 제안한 ARTI 알고리즘은 퍼지 합 접속 연산자를 이용하여 유사도를 동적으로 조정함으로써 기존의 ART1을 개선하였다. 추출 및 인식 실험 결과, 제안된 추출 및 인식 방법이 영문 명함 인식에서 효율적인 것을 확인하였다.

  • PDF

개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm)

  • 김광백
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.519-524
    • /
    • 2006
  • 자궁 경부암 세포진 영상의 영역 분할은 슬라이드의 상태나 정상 및 비정상에 따라 많은 차이를 보여 자궁경부암 세포진 인식 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 퍼지 그레이 모폴로지 연산을 이용하여 핵을 추출하고, 추출된 세포진 핵 영역은 형태학적 정보와 명암 정보, 색상 정보 및 질감 정보를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징들을 개선된 퍼지 ART 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵의 추출과 인식에 있어서 효율적임을 확인하였다.

Passport Recognition using Fuzzy Binarization and Enhanced Fuzzy RBF Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.222-227
    • /
    • 2004
  • Today, an automatic and accurate processing using computer is essential because of the rapid increase of travelers. The determination of forged passports plays an important role in the immigration control system. Hence, as the preprocessing phase for the determination of forged passports, this paper proposes a novel method for the recognition of passports based on the fuzzy binarization and the fuzzy RBF network. First, for the extraction of individual codes for recognizing, this paper targets code sequence blocks including individual codes by applying Sobel masking, horizontal smearing and a contour tracking algorithm on the passport image. Then the proposed method binarizes the extracted blocks using fuzzy binarization based on the trapezoid type membership function. Then, as the last step, individual codes are recovered and extracted from the binarized areas by applying CDM masking and vertical smearing. This paper also proposes an enhanced fuzzy RBF network that adapts the enhanced fuzzy ART network for the middle layer. This network is applied to the recognition of individual codes. The results of the experiments for performance evaluation on the real passport images showed that the proposed method has the better performance compared with other approaches.

ART2 알고리즘을 이용한 세라믹 영상에서의 결함 검출 (Fault Detection of Ceramic Imaging using ART2 Algorithm)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2486-2491
    • /
    • 2013
  • 세라믹 소재 영상은 사람의 육안으로 판단하기 힘든 내부 기공이나 균열, 이물질 등의 결함들이 존재한다. 본 논문에서는 사람의 육안으로 검출하기 힘든 세라믹 소재로 이루어진 파이프 용접부에 있는 결함을 확인하기 위해 ART2 알고리즘을 이용하여 세라믹 영상에서 결함을 검출하는 방법을 제안한다. 비파괴 검사는 본질에 손상이 전혀 가지 않는 검사 방법이기 때문에 소재의 결함 검출에 대해서는 적절한 방법이다. 따라서 본 논문에서는 Ends-In Search Stretching 기법을 적용하여 명암 대비를 강조하고, 명암 대비가 강조된 영상에서 삼각형 타입의 소속 함수를 이용한 퍼지 이진화 기법을 적용한 후, 임의의 패턴 입력에 대해서도 효과적으로 특징을 분류하는 개선된ART2 알고리즘을 적용하여 결함 영역을 검출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

Enhanced RBF Network by Using Auto- Turning Method of Learning Rate, Momentum and ART2

  • Kim, Kwang-baek;Moon, Jung-wook
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.84-87
    • /
    • 2003
  • This paper proposes the enhanced REF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of REF network and the output layer of REF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the REF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.

  • PDF

개선된 ART1 알고리즘을 이용한 이미지 인식에 관한 연구 (A Study on Image Recognition using Enhanced ART1 Algorithm)

  • 천두억;윤성호;김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권3호
    • /
    • pp.17-22
    • /
    • 1998
  • 이미지 인식 분야에 있어서 전자 결재시 도장의 진위 문제와 은행업무 또는 중요서류에 있어서의 도장 진위 문제는 점점 더 중요하게 부각되고 있는데 반해 기존의 도장 이미지 처리 과정은 물체의 테두리 부분과 같이 명암도가 날카롭게 변하는 부분의 선명도를 흐리게 하는 단점이 있으며 윤곽선을 추출하는데 어려움이 많다. 본 논문에서는 개선한 평활화 방법을 이용하여 특정한 범위내의 픽셀을 조사하여 가장 빈번히 나타나는 값을 찾고,그 값을 해당 픽셀의 값으로 대체시켜 윤곽선을 검출한 다음, ART1 학습 알고리즘에서 경계값을 퍼지 연산자중 Yager의 일반화된 교연산자를 적용하여 경계변수값을 동적으로 변화시켜 올바른 분류가 될 수 있도록 한다. 본 논문에서 제안한 ART1학습 알고리즘에 적용하여 실험한 결과 기존의 ART1 알고리즘을 이용한 경우보다 향상된 이미지 인식율을 보였다.

  • PDF

An Intelligent System for Recognition of Identifiers from Shipping Container Images using Fuzzy Binarization and Enhanced Hybrid Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.349-356
    • /
    • 2004
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. In this paper we propose and evaluate a novel recognition algorithm for container identifiers that effectively overcomes these difficulties and recognizes identifiers from container images captured in various environments. The proposed algorithm, first, extracts the area containing only the identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper. Then a contour tracking method is applied to the binarized area in order to extract the container identifiers which are the target for recognition. In this paper we also propose and apply a novel ART2-based hybrid network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm performs better for extraction and recognition of container identifiers compared to conventional algorithms.