• Title/Summary/Keyword: Engineering-scale

Search Result 12,522, Processing Time 0.044 seconds

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.

A Study on the Development and Validation of the Learning Competencies Scale for Engineering College Students: A Case Study K University (공학계열 대학생의 학습역량 측정도구 개발 및 타당화 연구: K대학을 중심으로)

  • Kim, Na-Young;Kang, Donghee
    • Journal of Engineering Education Research
    • /
    • v.25 no.4
    • /
    • pp.21-34
    • /
    • 2022
  • This study is conducted with the aim of identify the factors constituting learning competencies for engineering college students, and developing and validating the scale to measure them. To this end, literature and prior research were reviewed and focus group interview was conducted with high-achieving learners of K University in the capital region of Korea. According to previous research, 3 learning competency groups, 12 learning competencies and 41 sub-competencies were derived. Delphi survey was carried out twice, 28 sub-competencies were derived among the 41 sub-competencies through this process. 166 initial items were developed through literature review and FGI. Then, 130 items were confirmed by verifying content validity in the second Delphi survey. Based on this, pilot test were performed with 110 students in K university, and an interview was conducted with 50 students who participated in the pilot test. Reflecting the pilot test results, 1 sub-competency and 22 items were deleted. After the confirmed pilot test results, the main test were performed with all current students in K University. According to the main test result, the validity of the scale and the model fit was verified for the response data of 823 students, and the scale consisting of a total of 105 items was confirmed. The final learning competencies scale included three competency groups and 10 learning competencies. The scale developed in this study can be used as an independent scale for each competency group as needed. It is expected that this scale can be contributed to support the development their learning competencies for academic success of engineering college students, who are future learners.

Assessment of Dispersion Coefficients and Downward Positions of Water Spray for Small-Scale Release of Chlorine Gas

  • Jang, Seo-Il;Kim, Youngran;Yu, Wooyun;Shin, Dongil;Park, Kyoshik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • To assess downward positions of water spray for the small-scale release of chlorine gas, dispersion coefficients for the Gaussian dispersion model were validated at the small-scale release experiment. And the downwind distances of water spray were assessed with the simulated results. As results, the Gaussian plume model using the Briggs' dispersion coefficient well estimated the dispersed characteristics for small-scale release of chlorine gas. The best adequate downwind position of water spray is the position of the maximum concentration of chlorine at the ground level. And the adequate vertical and horizontal dimensions of water spray consider the maximum width and height of cloud.

Hybrid Secondary Voltage Control combined with Large-Scale Wind Farms and Synchronous Generators

  • Kim, Jihun;Lee, Hwanik;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.399-405
    • /
    • 2014
  • For stable integration of large-scale wind farms, integration standards (Grid codes) have been proposed by the system operator. In particular, voltage control of large-scale wind farms is gradually becoming important because of the increasing size of individual wind farms. Among the various voltage control methods, Secondary Voltage Control (SVC) is a method that can control the reactive power reserve of a control area uniformly. This paper proposes hybrid SVC when a large-scale wind farm is integrated into the power grid. Using SVC, the burden of a wind turbine converter for generating reactive power can be reduced. To prove the effectiveness of the proposed strategy, a simulation study is carried out for the Jeju system. The proposed strategy can improve the voltage conditions and reactive power reserve with this hybrid SVC.

Two-time Scale Controller Design for Vibration Reduction of High Speed Cartesian Manipulator (고속 직교 머니풀레이터의 진동 감소를 위한 Two-time scale 제어기 설계)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.107-114
    • /
    • 2004
  • This paper presents a two-time scale approach for vibration reduction of a high speed Cartesian manipulator. High speed manipulators would be subject to mechanical vibration due to high inertia forces acting on linkages. To achieve high throughput capability, such motion induced vibration would have to be damped quickly, to reduce settling time of the manipulator end-effector. This paper develops a two-time scale model fer a structurally-flexible Cartesian manipulator. Based on the two-time scale model, a composite controller consisting of a computed torque method for the slow time-scale rigid body subsystem, and a linear quadratic state-feedback regulator for the fast time-scale flexible subsystem, is designed. Simulation results show that the proposed two time-scale controller yields good performance in attenuating structural vibration arising due to excitation from inertial forces.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.

Design and Analysis of Leg Linkage of Small-scale Insect-inspired Ground Mobile Robot (소형 곤충형 지상 이동 로봇 주행 메커니즘의 다리 기구 설계 및 분석)

  • Sojung Yim;Seongjun Lee;Sang-Min Baek;Seokhaeng Huh;Jaekwan Ryu;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Small-scale ground mobile robots can access confined spaces where people or larger robots are unable. As the scale of the robot decreases, the relative size of the environment increases; therefore, maintaining the mobility of the small-scale robot is required. However, small-scale robots have limitations in using a large number of high-performance actuators, powerful computational devices, and a power source. Insects can effectively navigate various terrains in nature with their legged motion. Discrete contact with the ground and the foot enables creatures to traverse irregular surfaces. Inspired by the leg motion of the insect, researchers have developed small-scale robots and they implemented swing and lifting motions of the leg by designing leg linkages that can be adapted to small-scale robots. In this paper, we propose a leg linkage design for insect-inspired small-scale ground mobile robots. To use minimal actuation and reduce the control complexity, we designed a 1-DOF 3-dimensional leg linkage that can generate a proper leg trajectory using one continuous rotational input. We analyzed the kinematics of the proposed leg linkage to investigate the effect of link parameters on the foot trajectory.

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Performance Trial-Test of the Full-Scale Driving Pump for the Large Cavitation Tunnel(LCT) (대형캐비테이션터널(LCT) 실물 구동펌프 성능시운전)

  • Ahn, Jong-Woo;Kim, Gun-Do;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.428-434
    • /
    • 2015
  • The objective of the present study is to analyze the results of the trial-test for the full-scale driving pump, which is arranged in the LCT (Large Cavitation Tunnel). Firstly, the reasons of selecting the final design pump are introduced in terms of the performance analysis in model tests. The trial-test items for the full-scale driving pump are measurements of output current/voltage at the inverter of the main motor and the flow velocity in the LCT test section. The test results show the increase in flow rate of about 10.7% and the decrease in pump head of about 26%, compared with those of final design-pump specification. The motor power has the margin of about 22%. The performance analysis for the full-scale pump is conducted using the commercial code (CFX-10). The delivered power calculated with CFX-10 shows good agreement with that extracted from the full-scale pump test. It is found that CFX-10 is useful to analyze a full-scale pump.