• Title/Summary/Keyword: Engineering procedure

Search Result 7,794, Processing Time 0.03 seconds

An Application of Concurrent Engineering in Korean Manufacturing Industry for TQM (국내 제조업 분야의 동시 공학을 이용한 TQM)

  • 이관석;최정재
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.219-238
    • /
    • 1998
  • The objective of this study was to establish a procedure of concurrent engineering which can be easily a, pp.icable in Korean industry. An investigation of various techniques of concurrent engineering was conducted. Problems of Korean companies which can be resolved by concurrent engineering techniques were identified. Techniques which can resolve these problems at the relatively low cost and without complicated computer facilities were selected and form a procedure for this study. The procedure was a, pp.ied to a manufacturing company for validation. It was found that this procedure can substantially reduce time and cost of R&D and manufacturing.

  • PDF

A Simple Procedure of Seismic Performance Evaluation for Unreinforced Masonry Buildings in Korea

  • Kim, Taewan
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • This study was aimed at analyzing the three-step seismic performance evaluation procedure of Korea Infrastructure Safety Cooperation and proposing a new procedure suitable for unreinforced masonry buildings in Korea. For the study, it was investigated the performance evaluation results of five example URM buildings. First of all, it was found that the performance evaluation procedure for the URM buildings should be different from that for the other structural systems. As a result, a simple procedure of seismic performance evaluation was proposed, which includes elimination of elastic and inelastic push-over analysis and reduction of performance levels and evaluation steps. With the simple procedure, the URM buildings could be evaluated more easily than the other structures. It would be expected that the procedure can provide structural engineers with a simple and easy way to evaluate the seismic performance of the Korean URM buildings. Nevertheless, the procedure must be revised continuously by reflecting new research products for the URM buildings in Korea.

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Topological design of structures using an evolutionary procedure (점진적 최적화 기법을 이용한 구조물의 위상 설계)

  • 최창근;류명기;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.315-321
    • /
    • 1996
  • The structural topology optimization presented in this paper is based on an evolutionary procedure, developed by Xie and Steven, in which the low stressed material of a structure is removed from the structure step-by-step until an optimal design is obtained. By appling this procedure a layout or topology of a structure can be found from a initial block of material. The purpose of this paper is to implement the evolutionary procedure, introduce some novel features and investigate its feasibility by studying a few examples.

  • PDF

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

Pre-earthquake fuzzy logic and neural network based rapid visual screening of buildings

  • Moseley, V.J.;Dritsos, S.E.;Kolaksis, D.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.77-97
    • /
    • 2007
  • When assessing buildings that may collapse during a large earthquake, conventional rapid visual screening procedures generally provide good results when identifying buildings for further investigation. Unfortunately, their accuracy at identify buildings at risk is not so good. In addition, there appears to be little room for improvement. This paper investigates an alternative screening procedure based on fuzzy logic and artificial neural networks. Two databases of buildings damaged during the Athens earthquake of 1999 are used for training purposes. Extremely good results are obtained from one database and not so good results are obtained from the second database. This finding illustrates the importance of specifically collecting data tailored to the requirements of the fuzzy logic based rapid visual screening procedure. In general, results demonstrate that the trained fuzzy logic based rapid visual screening procedure represents a marked improvement when identifying buildings at risk. In particular, when smaller percentages of the buildings with high damage scores are extracted for further investigation, the proposed fuzzy screening procedure becomes more efficient. This paper shows that the proposed procedure has a significant optimisation potential, is worth pursuing and, to this end, a strategy that outlines the future development of the fuzzy logic based rapid visual screening procedure is proposed.

Study of the Qualification Test Procedure for the General Avionic Computer for Aircraft (항공기용 임무 통제 컴퓨터(General Avionic Computer)의 품질인증시험절차 수립에 관한 연구)

  • Jo, Jang-Hyen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper discuss the Qualification Test Procedure which is composed of main functional and environmental tests for the localizing avionics and subsystems, especially the detail test approaches of General Avionics Computed(GAC) through the analysis of related technical data packages for the purpose of performance proof of final products. Quality assurance procedures are properly established with the several kinds of inspections and functional test items. They are called as process inspections, functional test, acceptance test procedure and qualification test procedure. The Qualification test procedure are composed of the analysis of original engineering design concept and shall be performed for the acquisition of the certification of the GAC's quality as well as the aquisition of the related techniques and engineering know-how items.

  • PDF

A numerical analysis of compressive strength of rectangular concrete columns confined by FRP

  • Lin, Huei-Jeng;Liao, Chin-I;Yang, Chin
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.235-248
    • /
    • 2006
  • This investigation presents an analysis procedure for simulating the compressive behavior of a rectangular concrete column confined by fiber-reinforced plastic (FRP) under uniaxial load. That is, the entire stress-strain curve can be drawn through the present analysis procedure. The modified Mander's stress-strain model (Mander, et al. 1988) and finite element method are adopted in this analysis procedure. The numerical analysis results are compared with the experimental results to verify the accuracy of the analysis procedure. This study offers a useful analysis procedure of researching the compressive behavior of rectangular concrete columns confined by FRP. Two main parameters, the number of FRP layers and the radius of the round corners of a rectangular column, are investigated. The numerical results show that non-uniform stresses occur and reduce the sectional effective area owing to the geometry of the confined rectangular column. The stresses are concentrated at the corners of the rectangular column. Compressive strength of a rectangular column increases greatly because the number of FRP layers increase. The maximum predicted compressive stress of the rectangular column has approximately 10% error as compared to the experimental results. Comparing the numerical and experimental results demonstrates that the accuracy of this analysis procedure is credible. Besides, the stress-strain curves of the R30 models, which are rectangular concrete column with large radius of round corners, are almost bilinear. This calculated results conform to the expectation and show the present analysis procedure are more suitable than Mander's model (1988) to analyze the compressive behavior of the rectangular concrete column confined by FRP.

Efficient View-dependent Refinement of a Height Map (높이 맵의 효율적인 뷰 의존적 표현)

  • Chung, Yong Ho;Hwam, Won K.;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • This paper proposes a procedure enabling the extraction of view-dependent triangular approximations from a height map. In general, procedures to approximate a height map use tree hierarchies. These methods, however, have a limitation in terms of accuracy, because they depend on tree hierarchy than terrain features. To overcome the difficult, we apply the simplification method for triangular meshes to a height map. The proposed procedure maintains full decimation procedure to support multiresolution. The maintenance of decimation procedure results in creation of the groups (trees), each of which consists of vertices that can be merged into one vertex (root node). As the groups have tolerance which is determined by some tests, they support the generation of view-dependent arbitrary triangular meshes.