• Title/Summary/Keyword: Engineering analysis

Search Result 90,097, Processing Time 0.088 seconds

Investigation of Resonance Occurrence Conditions by Dynamic Interaction Analysis between Arch bridge and KTX Trains (타이드 아치교와 KTX열차의 동적상호작용을 고려한 공진현상 분석)

  • Jang, Jung-Hwan;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2016
  • Resonance occurrence conditions are explored by performing dynamic interaction analysis of arch bridge and KTX trains. The target bridge is a 3D tied-arch bridge having span length of 120m. KTX trains consist of two power carriages, two power and passenger carriages and sixteen passenger carriages. When KTX trains run on the target bridge with the uniform speed of 100 to 500km/h, the dynamic responses of the bridge induced by moving trains are obtained from railway arch bridge-train interaction analysis. Two resonance conditions are presented and whether the resonance phenomena occur or not at the suspicious resonance velocities is rigorously investigated through bridge deflections and accelerations and their FFT analysis.

Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness (지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가)

  • Kim, Soo Jung;Choi, Byong Jeong;Park, Ho Young;Lee, Jinwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation (동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Park, Yu-Seop;Kim, Jin-Soon;Choi, Ji-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

Seismic Fragility Analysis of a Bridge System Considering the Correlation of Components of the PSC Bridge (PSC교량의 부재별 상관관계를 고려한 시스템 지진취약도 분석)

  • An, Hyojoon;Shin, Soobong;Lee, Jong-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.267-274
    • /
    • 2021
  • Seismic fragility analysis of a structure is generally performed for the expected critical component of a structure. The seismic fragility analysis assumes that all the components behave independently in a structural system. A bridge system consists of many inter-connected components. Thus, for an accurate evaluation of the seismic fragility of a bridge, the seismic fragility analysis requires the composition of probabilities considering the correlation between structural components. This study presented a procedure to obtain the seismic fragility curve of a bridge system, considering the correlation between bridge components. Seismic fragility analysis was performed on a PSC bridge that is considered as the central infrastructure. The analysis results showed that the probability of the seismic fragility curve of the bridge system was higher than that of each bridge component.

A Design of Curriculum Considered Experimental Design & Analysis for Enhancing Engineer's Problem-Solving Ability (공학자의 문제해결능력 향상을 위한 실험계획 및 분석을 적용한 교육과정의 설계 -기계공학계열의 학과를 중심으로-)

  • Lee, Joong-Soon;Kwak, Hyo-Yean
    • Journal of Engineering Education Research
    • /
    • v.11 no.1
    • /
    • pp.34-47
    • /
    • 2008
  • The purpose of this paper is to design the curriculum by considering the experimental design and analysis for enhancing an engineer's creative problem-solving ability. This ability is one of the important objectives in modern engineering education. To achieve this purpose, first, it is suggested that the experimental design and analysis, a specific area of engineering education, is highly relevant to the creative problem-solving ability, one of the basic engineering competencies and of the final goals in engineering education. And also, the curriculum already introduced the experimental design and analysis in departments of mechanical engineering of universities are surveyed and reviewed. 59 papers are also analyzed to know how engineers applicate the knowledge of the experimental design and analysis to their activities. Finally, the module of engineering education curriculum introduced the experimental design and analysis to enhance effectively the engineer's creative problem-solving ability is suggested.

Analysis of symmetrical three-phase induction motor fed by phase angle controlled sources

  • Abdul-baki, E.M.;Lazim, M.T.;Naser, M.Sh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1028-1034
    • /
    • 1989
  • A method of analysis of the steady-state performance of induction motor with supply voltage controlled by cyclically-triggered inline thyristors is presented. Phase-variable model and asymmetrical components are not used in this analysis. Instead, Fast Fourier Transform technique and the method of multiple reference frames are employed to obtain the constant-speed performance of I.M. easily.

  • PDF

Development of Educational Simulator for Power System Analysis (교육용 전력 시스템 해석 소프트웨어 개발)

  • Choo, Sung-Ho;Lee, Joo-Won;Lee, Woo-Nam;Kim, Hyun-Hong;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.187-189
    • /
    • 2007
  • This paper presents the development method of educational simulator for Power System Analysis. The developed simulator can be made the students to model, analysis of power systems by drawing the system and performing the load flow, fault analysis by themselves under window environment. The simulator has developed by using the language based on XML(extensible Markup Language). Therefore, we determine that this simulator is useful to educate the load flow and fault analysis.

  • PDF

Accurate Metabolic Flux Analysis through Data Reconciliation of Isotope Balance-Based Data

  • Kim Tae-Yong;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1139-1143
    • /
    • 2006
  • Various techniques and strategies have been developed for the identification of intracellular metabolic conditions, and among them, isotope balance-based flux analysis with gas chromatography/mass spectrometry (GC/ MS) has recently become popular. Even though isotope balance-based flux analysis allows a more accurate estimation of intracellular fluxes, its application has been restricted to relatively small metabolic systems because of the limited number of measurable metabolites. In this paper, a strategy for incorporating isotope balance-based flux data obtained for a small network into metabolic flux analysis was examined as a feasible alternative allowing more accurate quantification of intracellular flux distribution in a large metabolic system. To impose GC/MS based data into a large metabolic network and obtain optimum flux distribution profile, data reconciliation procedure was applied. As a result, metabolic flux values of 308 intracellular reactions could be estimated from 29 GC/ MS based fluxes with higher accuracy.

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

Transient analysis of monopile foundations partially embedded in liquefied soil

  • Barari, Amin;Bayat, Mehdi;Saadati, Meysam;Ibsen, Lars Bo;Vabbersgaard, Lars Andersen
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.257-282
    • /
    • 2015
  • In this study, the authors present a coupled fluid-structures-seabed interaction analysis of a monopile type of wind turbine foundations in liquefiable soils. A two dimensional analysis is performed with a nonlinear stiffness degradation model incorporated in the finite difference program Fast Lagrangian Analysis of Continua (FLAC), which captured the fundamental mechanisms of the monopiles in saturated granular soil. The effects of inertia and the kinematic flow of soil are investigated separately, to highlight the importance of considering the combined effect of these phenomena on the seismic design of offshore monopiles. Different seismic loads, such as those experienced in the Kobe, Santa Cruz, Loma Prieta, Kocaeli, and Morgan Hill earthquakes, are analyzed. The pore water pressure development, relative displacements, soil skeleton deformation and monopile bending moment are obtained for different predominant frequencies and peak accelerations. The findings are verified with results in the liter.