• Title/Summary/Keyword: Engineering accounting

Search Result 603, Processing Time 0.026 seconds

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Recovery of Gallium and Indium from Waste Light Emitting Diodes

  • Chen, Wei-Sheng;Chung, Yi-Fan;Tien, Ko-Wei
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Recovery of gallium and indium from waste light emitting diodes has been emphasized gradually owing to high content of gallium and indium. This study was established the recovery of gallium (Ga3+) and indium (In3+) from waste gallium nitride was contained in waste light-emitting diodes. The procedure was divided into the following steps; characteristic analysis, alkaline roasting, and leaching. In characteristic analysis part, the results were used as a theoretical basis for the acid leaching part, and the chemical composition of waste light emitting diodes is 70.32% Ga, 5.31% Si, 2.27% Al and 2.07% In. Secondly, with reduction of non-metallic components by alkaline roasting, gallium nitride was reacted into sodium gallium oxide, in this section, the optimal condition of alkaline roasting is that the furnace was soaked at 900℃ for 3 hours with mixing Na2CO3. Next, leaching of waste light emitting diodes was extremely important in the process of recovery of gallium and indium. The result of leaching efficiency was investigated on the optimal condition accounting for the acid agent, concentration of acid, the ratio of liquid and solid, and reaction time. The optimal condition of leaching procedures was carried out for 2.0M of HCl liquid-solid mass ratio of 30 ml/g in 32minutes at 25℃ and about 96.88% Ga and 96.61% In were leached.

Application of Accrual Basis for Calculation of Prolongation Cost in Construction Projects (공기연장 추가간접비 산정기준의 발생주의방식 적용 연구)

  • Jeong, Kichang;Lee, Jaeseob
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.5
    • /
    • pp.111-120
    • /
    • 2018
  • Recently, Domestic public construction projects are experiencing a great deal of disputes because of the growing uncertainty about the criteria for calculating the prolongation cost. In addition, researchers have been studying various systems and proper cost estimates in an effort to reduce the uncertainty of these systems and the occurrence of disputes. However, there is no standard yet for social consensus. Meanwhile, The study on the classification system according to the recognition standard of accounting has been systematically studied. As a result, the concepts of accrual and cash basis are defined separately. The purpose of this study is to verify the possibility of applying the concept of 'accrual basis' to the Standard for calculation of prolongation cost. Therefore, As a result of analyzing the occurrence pattern of Job-site overhead cost, it is confirmed that actual costs can not be calculated by the cash-basis method. In particular, the implications of the necessity of the accrual-basis method should be more strictly indicated in the case of items such as indirect labor costs and welfare benefits. In addition, the contractor 's claim report and the appraisal report were examined. As a result, it was confirmed that the calculation situations of prolongation costs are biased to the cash-basis method. In this way, it is suggested that necessary to supplement the calculation standard of the actual costs from the point of view of accrual basis.

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.

Estimating Climate Pollutants Emissions and Service Demands considering Socio-economic Change: Residential·Commercial Sector, Transportation Sector, Industrial Sector (사회경제 변화를 고려한 서비스 수요 및 기후변화 유발물질 배출량 예측: 가정·상업부문, 교통부문, 산업부문을 중심으로)

  • Park, Jin-Han;Lee, Dong-Kun;Lee, Mi-Jin;Park, Chan;Jung, Tae-Yong;Kim, Sang-Kyun;Hong, Sung-Chul;Baek, So-Jin;Lee, Jang-Hoon
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.291-302
    • /
    • 2015
  • Vulnerability due to climate change depends on the concentration of carbon dioxide emissions over several upcoming decades. The objective of this study is to estimate the concentration of greenhouse gases and air pollutants in 2100, while also accounting for expected socio-economic changes in Korea. First, we intend to prepare scenarios for possible socioeconomic changes in Korea: business as usual (BAU), high growth and low growth. Secondly, we aim to predict services demands in residential?commercial sector, transportation sector, industrial sector for each scenarios. Finally, the emissions of LLGHG and SLCP will be estimated on the basis of the predicted service demands. The study results project that in Korea, LLGHG emissions will be approximately $660Mt\;CO_2\;eq$. and SLCP emissions will be approximately 3.81 Mt, -including black carbon (BC) by 2100. The transportation and industrial sectors are the major source for LLGHG emissions, and the residential and commercial sector serve as the SLCP source. Later, additional studies on the cost and benefit of mitigation should be carried out by comparing the reduced use of materials that cause climate change as a result of reduction policies and the socioeconomic cost.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (II) - Focusing on AERMOD Model Application Method - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(II) - AERMOD 모델 적용방법을 중심으로 -)

  • Suhyang Kim;Sunhwan Park;Hyunsoo Joo;Minseop So;Naehyun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.4
    • /
    • pp.203-213
    • /
    • 2023
  • The AERMOD model was the most used, accounting for 89.0%, based on the analysis of the environmental impact assessment reports published in the Environmental Impact Assessment Information Support System (EIASS) between 2021 and 2022. The mismatch of versions between AERMET and AERMOD was found to be 25.3%. There was the operational time discrepancy of 50.6% from industrial complexes, urban development projects between used in the model and applied in estimating pollutant emissions. The results of applying various versions of the AERMET and AERMOD models to both area sources and point sources in both simple and complex terrain in the Gunsan area showed similar values after AERMOD version 12 (15181). Emissions are assessed as 24-hour operation, and the predicted concentration in both simple and complex terrain when using the variable emission coefficient option that applies an 8-hour daytime operation in the model is lowered by 37.42% ~ 74.27% for area sources and by 32.06% ~ 54.45% for point sources. Therefore, to prevent the error in using the variable emission coefficient, it is required to clearly present the emission calculation process and provide a detailed explanation of the composition of modeling input data in the environmental impact assessment reports. Also, thorough reviews by special institutions are essential.

A Study on the Domain Discrimination Model of CSV Format Public Open Data

  • Ha-Na Jeong;Jae-Woong Kim;Young-Suk Chung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.129-136
    • /
    • 2023
  • The government of the Republic of Korea is conducting quality management of public open data by conducting a public data quality management level evaluation. Public open data is provided in various open formats such as XML, JSON, and CSV, with CSV format accounting for the majority. When diagnosing the quality of public open data in CSV format, the quality diagnosis manager determines and diagnoses the domain for each field based on the field name and data within the field of the public open data file. However, it takes a lot of time because quality diagnosis is performed on large amounts of open data files. Additionally, in the case of fields whose meaning is difficult to understand, the accuracy of quality diagnosis is affected by the quality diagnosis person's ability to understand the data. This paper proposes a domain discrimination model for public open data in CSV format using field names and data distribution statistics to ensure consistency and accuracy so that quality diagnosis results are not influenced by the capabilities of the quality diagnosis person in charge, and to support shortening of diagnosis time. As a result of applying the model in this paper, the correct answer rate was about 77%, which is 2.8% higher than the file format open data diagnostic tool provided by the Ministry of Public Administration and Security. Through this, we expect to be able to improve accuracy when applying the proposed model to diagnosing and evaluating the quality management level of public data.

Assessment of temperature-dependent water quality reaction coefficients and monthly variability of residual chlorine in water distribution networks (수온 변화에 따른 상수관망 내 수질반응계수 추정 및 월별 잔류염소농도 분포 변화 분석)

  • Jeong, Gimoon;Choi, Taeho;Kang, Doosun;Lee, Juwon;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.705-720
    • /
    • 2023
  • In South Korea, ongoing incidents related to drinking water quality have eroded consumer trust. Specifically, beyond quality incidents, there have been complaints about taste, odor, and other issues stemming from the presence of chlorine. To address this, water service operators are employing various management strategies from both temporal (scheduling) and spatial (rechlorination) perspectives to ensure uniform and safe distribution of chlorine residuals. In this study, we focus on the optimal monthly management of chlorine residuals, based on water distribution network analysis. Water quality reaction coefficients, including bulk fluid and wall reaction coefficients, were estimated through lab-scale tests and EPANET water quality simulations, respectively, accounting for temperature variations in a large-scale water distribution network. Utilizing these estimated coefficients, we examined the monthly variations in chlorine residual distribution under different chlorine injection conditions. The results indicate that the efficient concentration for chlorine injection, which satisfies the residual chlorine limit range, varies with temperature changes. Consequently, it is imperative to establish a specific and quantitative chlorine injection plan that considers the accurate spatial distribution of monthly chlorine residuals.