• Title/Summary/Keyword: Engineering License

Search Result 324, Processing Time 0.029 seconds

License plate recognition technique on black box using Apache Kafka (아파치 카프카를 활용한 블랙박스 영상에서의 차량 번호판 인식 방법)

  • Jung, Sang-Won;Jung, Seung-Won;Hwang, Een-Jun;Jeong, Chang-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.87-89
    • /
    • 2017
  • 차량의 블랙박스와 CCTV, 드론 등 다양한 채널에서 촬영된 영상의 증가로, 차량 및 교통 상황과 관련된 데이터의 양 또한 폭발적으로 증가하고 있다. 본 연구에서는 이러한 데이터들의 고속 처리를 위해, 실시간 메시지 분산처리 시스템인 아파치 카프카를 활용하여 블랙박스 영상의 프레임을 여러 노드에 분배하였다. 또한, 각각의 노드에 들어온 블랙박스 영상의 프레임을 입력으로 하여, 영상처리 기법을 통한 차량 번호판의 지역화와 문자 분할 및 이를 인식하기 위한 연구를 수행하였다.

Fully Convolutional Neural Network based Vehicle License Plate Detector (완전 컨볼루션 신경망 기반의 차량 번호판 검출기)

  • Im, Sung-Hoon;Park, Si-Hong;Lee, Jae-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.1031-1034
    • /
    • 2017
  • 기존 번호판 검출 및 인식에 사용되어지는 방법은 사랑이 직접 번호판의 특정을 기술하여 검출을 진행한다. 본 연구에서는 학습 기반의 완전 컨볼루션 신경망을 이용하여 번호판을 검출하였고 신경망은 약 27MB의 용량만으로 110-FPS 정도의 성능을 얻었다. 학습을 위한 데이터는 한국 번호판의 모든 종류 및 주간, 야간의 환경을 포함한 대략 5000개를 직접 수집하였다 또한 5000개의 데이터를 회전 및 이동에 대한 무작위적인 변형을 주어 대략 15000개의 데이터로 확장하였다 확장된 데이터로 얻은 결과로 번호판 검출률 97%를 얻었다.

Local Descriptor Classification Method for License Plate Detection (번호판 영역 검출을 위한 지역특징 분류 방법)

  • Hong, Won-Ju;Kim, Min-Woo;Oh, Il-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.466-468
    • /
    • 2011
  • 본 논문은 영상 획득 환경이 자유로운 상황에서 차량 번호판 영역을 검출하기 위한 새로운 방법을 제안한다. 입력 영상에서 SIFT 지역특징을 추출하고 미리 학습한 분류기를 통해 각 지역특징이 번호판 내부에 속하는지 번호판 외부에 속하는지를 분류한다. 번호판 내부로 분류된 지역특징이 밀집한 영역이 번호판 영역으로 검출된다. 실험을 통해 제안하는 지역특징 분류 방법이 높은 성능으로 번호판 내/외부를 분류함을 보인다.

Character Segmentation in a License Plate Using Histogram Specification based on Anisotropic Soothing Filter (Anisotropic Smoothing Filter 기반 Histogram Specification을 이용한 번호판 문자분할 기법)

  • Jung, Sung-Cheol;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.835-836
    • /
    • 2008
  • This paper presents a new method of segmenting characters in a car licence plate which is less influenced by illumination variation. It uses an anisotropic filter to reduce the lighting noise and a histogram specification scheme to obtain the binary image. Anisotropic smoothing filter process the input images, which are acquired under different lighting conditions, so that they may have similar image quality. The enhanced performance of the proposed algorithm has been proved by the experiment.

  • PDF

Finding Alternative Solutions and Analyzing Spectrum Policy Cost on Spectrum Usage (전파사용 기반의 전파정책성 비용제도 분석 및 대안의 결정)

  • Ahn, Choon-Soo;Lee, Dong-Hyung;Youm, Se-Kyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The fee system on spectrum usage is a usage fee that is charged for using spectrum provided by a wireless tower, and is used for management and promotion of the waves. The current fee system for spectrum usage in South Korea has faced many problems, such as complex calculation for fees, unjustified charges, unfairness in cost sharing among providers, and general inefficiency of operation. This study focuses on comparison of fee systems for spectrum usage of South Korea and other foreign countries, extraction of the root causes and problems by case analyses, and recommendation for better solutions to make a reasonable fee system for spectrum usage. The result of this study can be used as a solution to render spectrum usage more effective.

Recognition of Vehicle License Plate Using Polynomial-based RBFNNs (다항식 기반 RBFNNs를 이용한 차량 번호판 인식)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1361-1362
    • /
    • 2015
  • 차량의 수요가 증가함에 따르는 지능적인 통제시스템의 요구된다. 그리고 과학기술의 발달과 시스템의 자동화에 따라 사람뿐만 아니라 차량도 인식이 필요하게 되었다. 따라서 본 논문은 다항식 기반 RBFNNs를 이용하여 차량의 번호판 인식을 수행한다. 번호판 영역과 번호는 영상처리에서 영상 이진화와 영상 모폴로지 기법 등 전처리 과정을 거친 후 검출하고, 차량 번호를 인식하기 위해 0~9사이의 숫자를 클래스 별로 데이터의 차원을 축소시켜 다항식 기반 RBFNNs에 학습하고, 테스트 차량의 번호판에서 번호별로 분류하여 차량번호를 인식한다.

  • PDF

Vehicle License Plate Recognition System using Color Information and PCA (칼라정보와 주성분분석법을 이용한 차량 번호판 인식에 관한 연구)

  • Han Soow-Han;Park Sung-Dae;Park Pan-Gon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.437-442
    • /
    • 2005
  • 본 연구에서는 칼라정보와 주성분분석법(principal component analysis : PCA)를 이용한 차량 번호판 인식시스템을 구성하였다. 먼저 입력된 차량 영상에서 번호판의 형태적 특징과 녹색 칼라 정보를 이용하여 번호판 영역을 추출하였으며, 추출된 번호판내의 문자 및 숫자의 위치적 특징을 이용하여 번호판의 종류(구형, 신형, 최신형)를 구분하였다. 이렇게 추출되고 구분된 번호판은 문자의 상대적 위치정보와 수평 및 수직 투영 정보를 함께 이용하여 각각의 문자영역을 분리 추출하였다. 추출된 문자영역은 주성분분석법을 이용하여 고유벡터를 추출한 후 문자 인식에 사용하였다. 본 논문의 실험과정에서는 다양한 시간대 환경에서 촬영된 주행 중인 자동차 320대의 자가용 차량영상에 대하여 실험하였으며 높은 번호판 추출률과 번호판종류 구분률 그리고 문자 인식률을 얻을 수 있었다.

  • PDF

Recognition of License Plate of Car in Vehicle Motion Images (도로 동영상에서 차량번호판 인식)

  • Lee, Hyang-Jeong;Lee, Hyo-Jong;Lee, Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.775-778
    • /
    • 2002
  • 본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.

  • PDF

License Plate Recognition System using Deep Convolutional Neural Network (심층 컨볼루션 신경망을 이용한 번호판 인식 시스템)

  • Lim, Sung-Hoon;Park, Byeong-Ju;Lee, Jae-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.754-757
    • /
    • 2016
  • 기존 번호판 인식은 직접 특징 추출 알고리즘을 개발하여 완전 연결 신경망으로 특징을 분류하는 방법이 보편적이다. 본 연구는 전처리 과정에서 번호판 후보군 검출 및 세그먼테이션을 수행하고 특징 추출 없이 미리 학습된 심층 컨볼루션 신경망을 통해 문자를 분류하는 방법을 제안한다. 직접 수집한 2,900장의 번호판 데이터베이스를 이용하여 훈련 집합 및 검증 집합을 구성하였다. 훈련 집합과 검증 집합에 대해 실험한 결과 번호판 후보군 검출률은 97%를 얻을 수 있었고, 이에 대한 인식률은 95%를 얻었다.

Recognition of Car License Plate using Kohonen Algorithm

  • Lim, Eun-Kyoung;Yang, Hwang-Kyu;Kwang Baek kim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.785-788
    • /
    • 2000
  • The recognition system of a car plate is largely classified as the extraction and recognition of number plate. In this paper, we extract the number plate domain by using a thresholding method as a preprocess step. The computation of the density in a given mask provides a clue of a candidate domain whose density ratio corresponds to the properties of the number plate obtained in the best condition. The contour of the number plate for the recognition of the texts of number plate is extracted by operating Kohonen Algorithm in a localized region. The algorithm reduces noises around the contour. The recognition system with the density computation and Kohonen Algorithm shows a high performance in the real system in connection with a car number plate.

  • PDF