• Title/Summary/Keyword: Engineering Coordinate System

Search Result 1,008, Processing Time 0.022 seconds

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.

Interactive 3D Pattern Design Using Real-time Pattern Deformation and Relative Human Body Coordinate System (실시간 패턴 변형과 인체 상대좌표계를 이용한 대화형 3D 패턴 디자인)

  • Sul, In-Hwan;Han, Hyun-Sook;Nam, Yun-Ja;Park, Chang-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.582-590
    • /
    • 2010
  • Garment design needs an iterative manipulation of 2D patterns to generate a final sloper. Traditionally there have been two kinds of design methodologies such as the flat pattern method and the pattern draping method. But today, it is possible to combine the advantages from the two methods due to the realistic cloth simulation techniques. We devised a new garment design system which starts from 3D initial drape simulation result and then modifies the garment by editing the 2D flat patterns synchronously. With this interactive methodology using real-time pattern deformation technique, the designer can freely change a pattern shape by watching its 3D outlook in real-time. Also the final garment data were given relative coordinates with respect to the human anthropometric feature points detected by an automatic body feature detection algorithm. Using the relative human body coordinate system, the final garments can be re-used to an arbitrary body data without repositioning in the drape simulation. A female shirt was used for an example and a 3D body scan data was used for an illustration of the feature point detection algorithm.

Dynamic Analysis of an Automatic Ball Balancer with Triple Races (삼중레이스를 갖는 자동평형장치의 동적 해석)

  • Jwa, Seong-Hun;Jo, Eun-Hyeong;Son, Jin-Seung;Park, Jun-Min;Jeong, Jin-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.764-774
    • /
    • 2002
  • Dynamic behaviors are analyzed for an automatic ball balancer (ABB) with triple races, which is a device to reduce the unbalanced mass of optical disk drives (ODD) such as CD-ROM or DVD drives. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. It is shown that the polar coordinate system provides the complete stability analysis while the rectangular coordinate system used in other previous studies has limitations on the stability analysis. For the stability analysis, the equilibrium positions and the linearized perturbation equations are obtained by the perturbation method. Based on the linearized equations, the stability of the system is analyzed around the equilibrium positions; furthermore, to confirm the stability, the time responses for the nonlinear equations of motion are computed by using a time integration method and experimental analyses are performed. Theoretical and experimental results show a superiority of the ABB with triple races.

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

New TDOA-Based Three-Dimensional Positioning Method for 3GPP LTE System

  • Lee, Kyunghoon;Hwang, Wonjun;Ryu, Hyunseok;Choi, Hyung-Jin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.264-274
    • /
    • 2017
  • Recently, mobile positioning enhancement has attracted much attention in the 3rd generation partnership project long-term evolution system. In particular, for urban canyon environments, the need for three-dimensional (3D) positioning has increased to enable the altitude of users to be measured. For several decades, several time difference of arrival (TDOA-) based 3D positioning methods have been studied; however, they are only available when at least four evolved Node Bs (eNBs) exist nearby or when all eNBs have the same height. Therefore, in this paper, we propose a new 3D positioning method that estimates the 3D coordinates of a user using three types of two-dimensional (2D) TDOAs. However, the give inaccurate results owing to the undefined axis of the 2D coordinate plane. Therefore, we propose a novel derivation of the hyperbola equation, which includes the undefined axis coordinate in the 2D hyperbola equation. Then, we propose an interaction algorithm that mutually supplies the undefined axis coordinate of users among 2D TDOAs. By performing extensive simulations, we verify that the proposed method is the only solution applicable by using three eNBs with different heights.

Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate (상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구)

  • Dae, Dae-Sung;Cho, Heui-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF

Linearization of the Multi-input Discrete-time Nonlinear Systems (다 입력 이산 비선형 시스템의 선형화)

  • Kim, Jae-Hyun;Roh, Dong-Hwi;Park, Soon-Hyoung;Kim, Yong-Min;Lee, Hong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.30-39
    • /
    • 2000
  • In order to linearize the nonlinear systems, two different methods(i.e. state coordinate change and feedback) are usually used. In this paper, we consider the multi-input discrete-time nonlinear systems and obtain the necessary and sufficient conditions for both the linearization problem by state-coordinate change and the feedback linearization problem. The way of finding state coordinate change and state feedback which linearize the given system is also given in the proof.

  • PDF

state-of-the-art

  • Kim, Sunn-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.232-253
    • /
    • 1991
  • 생산공정중에서 검사공정이 비교적 늦게 자동화되어 왔으나 Coordinate Measuring Machine(CMM)과 computer의 결합을 통하여 Computer-Aided Testing(CAT)이 실현되고 있다. 이 논문에서는 CAT에 대한 전반적인 개념을 설명하였으며, CAD 및 CAM과 CAT의 결합, expert system을 이용한 측정계획의 수립, vision을 이용한 측정자동화의 경향을 설명하고 있다. 또한 CAD와 Coordinate Measuring Machine(CMM)의 결합에 필요한 data교환 format을 소개한다. 그리고 현재 상용화 되어있는 CAT software들의 기능을 소개한다.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.