• 제목/요약/키워드: Engine oil

검색결과 870건 처리시간 0.029초

디젤기관에서의 어유의 연소특성과 기관성능에 관한 연구 (A Study on the Engine Performance and Combustion Characteristics of Fish Oil in a Diesel Engine)

  • 서정주;왕우경;안수길
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.85-93
    • /
    • 1994
  • The engine performance and combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in a diesel engine. The maximum pressure showed no significant difference among test fuels at low load, but it was higher as the blending rate of fish oil increases at high load. Increasing the blending rate of fish oil, the rate of heat release and burned fraction were higher than those of diesel oil. The ignition delay became longer than that of diesel oil as the blending rate of fish oil increases, and its differences were larger at different loads. The combustion duration and density of smoke were shorter and lower as the blending rate of fish oil increases. The rate of fuel consumption showed no significant difference between diesel oil and fish blended with diesel oils.

  • PDF

피스톤-링 및 실린더 보아 마모를 고려한 엔진오일소모 연구 (A Study on Engine Oil Consumption Considering Wear of Piston-Ring and Cylinder Bore)

  • 전상명
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.143-150
    • /
    • 2007
  • Ring and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Here, the oil amount through top ring gap into combustion chamber is estimated as engine oil consumption. Furthermore, the wear theories of ring and cylinder bore are included. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. The wear data of rings and cylinder bore are obtained from three engines after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below. It is shown that the important factor regarding oil consumption increasement is the wear of ring face.

피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구 (A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

내연기관의 엔진오일상태에 대한 유전율 변화 특성 (Characteristics of Variant Dielectric Constants With Respect to Internal Combustion Engine Oil States)

  • 김동민;김영주;이승희
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제15권1호
    • /
    • pp.19-21
    • /
    • 2012
  • 내연 기관의 엔진오일은 열화작용에 의해서 수명이 짧아지고 대기오염을 유발하게 된다. 엔진오일의 상태를 정확히 측정하여 새오일로 교환함으로 엔진의 수명 연장 및 환경오염을 줄일 수 있다. 정전용량 프로브는 엔진오일과 같은 유체의 유전율을 측정하는데 사용 할 수 있다. 본 논문은 엔진 오일의 열화 정도에 따라서 달라지는 유전율 특성을 분석하였다. 오일의 상태에 따라서 달라지는 프로브의 정전용량을 각각 LCR Meter로 측정하여 엔진오일의 유전율을 계산하였다. 또한, 프로브의 크기에 따른 정전용량의 변화를 측정하여 유전율 측정의 정확도를 제시한다. 오염된 오일 일수록 유전율이 증가하며, 유전율로 오일의 오염정도를 판단하는 것이 가능하다.

인공지능을 이용한 엔진오일 교환시기 예측 (Prediction of the Time for Exchange Engine Oil using Artificial Intelligence)

  • 홍유식;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.488-491
    • /
    • 2005
  • 본 논문에서는 인공지능을 이용해서 엔진오일을 자동으로 교환시스템을 제안 하고자 한다. 모범운전자도, 엔진오일을 교환하는 시기를 정확하게 예측하기란 매우 어렵다. 왜냐하면 엔진오일 색깔이 검은색이거나 주행거리가 3000 km 이상이 되었을 때에 엔진오일을 교환해야만 하는 것이 아니기 때문이다. 최적의 엔진오일 교환시기를 예측하기 위해서는 엔진오일 색깔, 엔진오일 점도와 도로조건, 급제동 및 급발진 조건을 고려해야하기 때문이다. 그러므로 본 논문에서는 이러한 문제점을 해결하기 위해서 퍼지규칙 및 신경망을 이용해서 엔진오일교환시기를 예측하는 전문가시스템을 개발하였다.

  • PDF

퍼지 및 신경망 알고리즘을 이용한 엔진오일 교환 시기 예측 방법에 관한 연구 (Study of engine oil replacement times estimate method using fuzzy and neural network algorithm)

  • 남상엽;홍유식;김천식
    • 대한전자공학회논문지TE
    • /
    • 제42권4호
    • /
    • pp.15-20
    • /
    • 2005
  • 엔진오일 교환 시기 예측은 엔진의 수명을 연장하고 연비를 증가시킨다. 그러나, 엔진오일의 교환 시기는 자동차를 주행한 거리나, 장거리를 운행한 차량, 단거리를 운행한 차량, 엔진오일의 종류 등에 따라서 크게 달라진다. 본 논문에서는 엔진오일 교환 시기를 예측함에 있어서 단지 주행 거리나 엔진오일의 색깔의 변화 등의 데이터를 퍼지 및 신경망 알고리즘을 이용하여 값을 구하였다. 모의실험결과, 지능형 엔진오일 교환 시스템이 기존의 사람이 예측하여 결정하는 방식 보다는 더 정확하게 엔진 오일을 교환할 수 있음을 입증할 수 있었다. 따라서 지금의 자동차에 이러한 알고리즘을 적용한다면 보다 편리한 차량이 될 것으로 기대한다.

불연속 오일공급 크랭크샤프트 시스템을 채택한 엔진 윤활시스템의 해석 (A Study on the Engine Lubrication System Analysis Adapting Discontinuous Oil Supply Crankshaft System)

  • 윤정의
    • Tribology and Lubricants
    • /
    • 제20권1호
    • /
    • pp.27-32
    • /
    • 2004
  • This paper presents unsteady oil flow behaviors in the engine lubrication network to clarify the differences between continuous and discontinuous oil supply crankshaft system. Using commercial network analysis program, Flowmaster2, engine lubrication network system analysis were carried out. And effects of crankshaft speed and supplied oil pressure on pressure fluctuation in oil groove and oil flow rate to each bearing were analyzed.

제조 디젤엔진 오일과 상업용 디젤엔진 오일의 실차시험 연구 (The Study on Field Test of the New Formulated and Commercial Diesel Engine Oils)

  • 김영운;정근우;강석춘
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.51-59
    • /
    • 2001
  • A diesel engine oil formulated in KRICT and a commercial diesel engine oil (API CG-4) were tested by car and their Kinematic Viscosity, TAN, TBN, metal content, additive depletion, anti-wear property and IR analysis were analyzed. From the research, both of the tested oils had almost the same properties f3r the change of TAN and TBN, but the change of Kinematic Viscosity of formulated oil was slightly higher than that of commercial oil. The iron content in the commercial oil increased rapidly from 7000 km while that of the formulated oil was still low. These results were confirmed by the anti-wear test with a 4-ball wear test machine for the each samples. Also, for the commercial oil, the depletion factor of the Zn-DTP which was added as an anti-wear property did not change any more after 7000 km. But, that of the formulated oil changed continuously to 8000 km, which means that the ability to prevent wear of the sliding pairs exists for the formulated oil. From the analysis results of oil properties obtained by field test, it was found that the commercial oil could be used only within 7000 km, but the formulated oil could be used more than 8000 km without severe wear of the sliding parts in the diesel engine.

  • PDF

자동차 엔진에서 윤활유 관련 트라이볼로지 고장 사례 연구 (Studies of Oil Related Tribological Failures of Automotive Engines)

  • 이일권;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.244-251
    • /
    • 1998
  • This paper presents case studies on the oil related failures in automotive engines. In this study, engine oils play an important roles as a friction reducing matehals and should be supplied to a tribological machine elements sufficiently. The starvation or depletion of a lubricant may seriously produce the tribological failures on the rubbing parts of the engine.

  • PDF

유채유를 연료로 한 직접분사식 농용 디젤기관의 연소특성 (Combustion Characteristics of a Direct Injection Agricultural Diesel Engine with Rapeseed Oil)

  • 최승훈;변종원
    • Journal of Biosystems Engineering
    • /
    • 제34권3호
    • /
    • pp.135-139
    • /
    • 2009
  • Harmful exhaust emissions of diesel engines are recognized as main causes of air pollution in these days. But, the direct injection diesel engine is widely used for sake of minimization on energy consumption. Because biodiesel fuel is a renewable and alternative fuel for a diesel engine, its usability is expanded. To investigate the effect of biodiesel fuel(extracted from rapeseed oil) on the characteristics of performance and exhaust emissions in an agricultural diesel engine, the biodiesel fuel derived from rapeseed oil was applied in this study. Smoke emission of esterified rapeseed oil was reduced remarkably by approximately 44.5% at 1500 rpm, full load in comparison with the commercial diesel fuel. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. It was concluded that esterified rapeseed oil could be utilized effectively as an alternative and renewable fuel for agricultural direct injection diesel engines.