• Title/Summary/Keyword: Engine load

Search Result 1,046, Processing Time 0.035 seconds

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

A Study on the Emission Factor of NOx and CO by Burning of Synthetic Biogas (합성 Bio-Gas 연소시 발생되는 질소산화물과 일산화탄소 배출에 관한 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • In view of energy supply, biogas can be seen as alternative fuel by substituting considerable amount of fossil fuel and may be utilized for heat and power production or for transport fuel production ($CH_4-enriched$ biogas). The aim of this research is to analyse the emission of $NO_x$ and CO from biogas fired combustion engine for electric power production. The result indicate a significant effect of biogas composition ($CH_4-CO_2$ ratio) and biogas flow rate on the air pollutants emission. The emission factors from this study were compared with those of U.S. EPA. Low $CH_4-CO_2$ ratio condition typically shows the lower $NO_x$ and CO emission than higher $CH_4-CO_2$ ratio condition. At normal $CH_4-CO_2$ ratio (7:3) emission factors of $NO_x$ and CO were 1.29 and 30.43 g/MMBtu, respectively. At low $CH_4-CO_2$, ratio (6:4) emission factors of $NO_x$ and CO were 0.646 and 60.86 g/MMBtu, respectively, It should be emphasized that the actual emission may vary considerably from these results due to operating conditions including torque load and engine speed.

Comparison of Three Methods Assessing the Ergonomic Risks of Manual Lifting Tasks at Ship Engine Manufacturing Facilities (선박용 엔진 제조업 들기작업의 인간공학적 위험 평가를 위한 세 가지 방법 비교)

  • Kim, Sun Ja;Shin, Yong Chul;Kim, Boo Wook;Kim, Hyun Dong;Woo, Ji Hoon;Kang, Dongmug;Lee, Hyun Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.104-113
    • /
    • 2005
  • A variety of ergonomic assessment methods of lifting tasks known as a major cause of work-related lower back pain have been used. But there is a limited information in choosing the most appropriate assessment method for a particular job and in finding out strengths and weakness of the methods. The purpose of this study was to assess and compare the ergonomic risks of lifting tasks in a marine diesel engine production industry by three lifting ergonomic assessment tools widely used: the National Institute for Occupational Safety and Health(NIOSH) Revised Lifting Equation(NLE), the Washington Administrative Code 296-62-0517(WAC), and the Snook Tables. Lifting index(weight of load/Recommended Weight Limit) of NLE($LI_{NLE}$) was above 1 at 34 tasks(75.6%) of a total number of 45 lifting tasks. LI of WAC($LI_{WAC}$) was above 1 at 11 tasks(24.4 %). LI of Snook Table($LI_{Snook}$) was above 1 at 29 tasks(64.4%). Thus, LI was high in orders of $LI_{NLE}$ > $LI_{Snook}$ > $LI_{WAC}$. There were significantly high correlations among three Lls(p<0.01). The correlation coefficients between $LI_{NLE}$and the other three Lls($LI_{WAC}$ and $LI_{Snook}$) were r=0.93 and r=0.88, respectively. The linear regression equations were y = 0.444x + 0.11(r=0.93) between $LI_{NLE}$ and $LI_{WAC}$, y = 0.93x + 0.008(r=0.88) between LI(NLE) and $LI_{Snook}$. The LI values by WAC was significantly lower than those by the other tools. The compared features, strength and limitation among these tools were described in this paper.

Implementation and Performance Evaluation of the Wireless Transaction Protocol Using UML/SDL (UML과 SDL을 이용한 무선 트랜잭션 프로토콜의 구현과 성능 평가)

  • 정호원;임경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1064-1073
    • /
    • 2002
  • In this paper, we design and implement the Wireless Transaction Protocol (WTP) proposed by the Wireless Application Protocol (WAP) forum using a protocol development tool, SDL Development Tool (SDT). And we conduct a comparative performance evaluation of the WTP implementation with other three implementations that are based on different implementation models respectively: the server model, the coroutine model, and the activity-thread model. To implement WTP, we first use Unified Modeling Language (UML) for analyzing the protocol requirement and defining the protocol engine architecture. Next, we use Software Development Language (SDL) to design the protocol engine in details and then generate the WTP implementation automatically with the aid of SDT The code size of the WTP implementation generated by SDT is 62% larger than the other three implementations. However, its throughput and system response time for transaction processing is almost equal to the other three implementations when the number of concurrent clients is less than 3,000. If more than 5,000 concurrent clients tries, the transaction success rate abruptly decreases to 10% and system response time increases to 1,500㎳, due to the increased protocol processing time. But, it comes from the fact that the load overwhelms the capacity of the PC resource used in this experimentation.

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF

The Study on Operability Improvement of the start motor for Auxiliary Power Unit of Rotorcraft (회전익 항공기 보조동력장치 시동모터 운용성 개선연구)

  • Lee, Gwang-Eun;Kang, Byoung-Soo;Na, Seong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.774-780
    • /
    • 2021
  • The auxiliary power unit (APU) of a rotorcraft starts the engine during operation/flying. The APU is composed of a gas turbine engine type. The starting principle of the component is that the electric start motor generates the power required for starting by rotating the shaft. In this study, quality improvement was performed by applying an over-running clutch (ORC) between the APU and the starter motor to secure the operability of the starter motor of the APU mounted on the rotorcraft. The starter motor has the main role of starting the APU, but during operation, it is rotated without load by the rotational force of the APU gear shaft, resulting in friction at the brush. This phenomenon causes abrasion of the brush of the starter motor. Consequently, when the APU operation time increases, the brush life decreases, and the operability of the APU is affected. In this study, an ORC that separates the interlocking between the start motor brush abrasion and the APU operation time was applied to improve the operability/durability of the APU starter motor. The effect was verified through a test, and the technical feasibility of the design change was analyzed.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.