• Title/Summary/Keyword: Engine load

Search Result 1,049, Processing Time 0.027 seconds

Effect of Fuel Injection Pressure and Timing on the Combustion and Emission Characteristics in a Compression Ignition Engine under Low Load Condition Fueled with Waste Cooking Oil Biodiesel (폐식용유 바이오디젤을 이용한 압축착화엔진의 저부하 영역에서 연료의 분사 압력과 분사 시기가 연소 및 배기특성에 미치는 영향)

  • Hwang, Joonsik;Jung, Yongjin;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.313-316
    • /
    • 2012
  • In this study, the combustion and emission characteristics of waste cooking oil biodiesel was investigated. The fuel was injected from 5 CAD (Crank angle degree) ATDC (After top dead center) to -60 CAD ATDC by 5 CAD with 800 bar and 1600 bar injection pressure. Generally, the hydrocarbon, carbon monoxide and smoke emissions from biodiesel fuel were lower than the emission levels of diesel fuel. However, the emission characteristic of biodiesel got worse than diesel when the fuel was injected earlier than -30 CAD ATDC. $NO_x$ emission from biodeisel was higher than diesel fuel in all experimental conditions.

  • PDF

Novel Electromagnetic Induction Eddy Current DPH based Continuous Pipeline Fluid Heating using Soft Switching PWM High Frequency Inverter

  • Nam, Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.305-309
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction eddy current based fluid heating appliance using voltage-fed quasi resonant zero voltage soft switching PWM high-frequency inverter using IGBTs, which can operate at a constant frequency variable power regulation scheme. The promising simple high efficient low noise inverter type electromagnetic induction eddy current based pipeline fluid heating appliance is proposed for saturated steam generator, superheated steam generator, hot water and hot air producer, metal catalyst heating for exhaust gas cleaning in engine. Under these technological backgrounds, a novel electromagnetic induction eddy current Dual Packs Heater(DPH) based pipeline fluid heating incorporates thin metal layer type package for continuous fluid heating appliances applying two types of voltage-fed quasi load resonant ZVS-PWM high frequency inverter. The unique features of a novel electromagnetic induction eddy current DPH based continuous pipeline fluid heating appliance is illustrated on the basis of simulation and discussed for the steady state operating characteristics and experimental results.

Dynamic Elastohydrodynamic Film Thickness in Rocker-Arm Valve Train System (로커암 밸브 트레인의 동적 탄성유체윤활 유막 연구)

  • 장시열;이희락
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 2003
  • Many computational researches have been performed about EHL film thickness in the contact between cam and follower in the engine valve train system. However, those computations do not explain the characteristics of dynamic film thickness which means squeeze film effect. Without the consideration of transient term in the Reynold's equation, the predicted film thickness from steady state condition has large difference from the actual film thickness. In this study, we have investigated the kinematic and dynamic simulations of rocker-arm valve train system. From the dynamic simulation, the applied load and the entraining velocity of the lubricant between cam and follower are obtained and with these values the dynamic film thickness is computed by Newton-Raphson method and compared with the steady state film thickness.

The feasible constant speed helical trajectories for propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.371-399
    • /
    • 2017
  • The motion of propeller driven airplanes, flying at constant speed on ascending or descending helical trajectories is analyzed. The dynamical abilities of the airplane are shown to result in restrictions on the ranges of the geometrical parameters of the helical path. The physical quantities taken into account are the variation of air density with altitude, the airplane mass change due to fuel consumption, its load factor, its lift coefficient, and the thrust its engine can produce. Formulas are provided for determining all the airplane dynamical parameters on the trajectory. A procedure is proposed for the construction of tables from which the flyability of trajectories at a given angle of inclination and radius can be read, with the corresponding minimum and maximum speeds allowed, the final altitude reached and the amount of fuel burned. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the C-130 Hercules.

An Expert System of Progressive Die Automated Design for Braun Tube Grid Working (전자총 전극 기공전용 프로그래시브 금형설계 전문가 시스템)

  • 박상봉
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.69-77
    • /
    • 1999
  • This paper describes an expert system of progressive die. Because of the complexity for die structure and of the critical problems for press machine mechanism in the progressive press process such as, the travel length in process, the equalized press load, and the other design parameter, it has been increased the requirement of the CAD system for progressive die design more an more. So, through this study, an expert system of progressive die has been developed. The results from the system developed were suggested the possibility of applications in the practice. To develop this system, it has used c-language under the HP-UNIX system and CIS customer language of the EXCESS CAD/CAM system. An application of this system will provide effective aids to the designer in this field.

  • PDF

A Study of Basic Design for the Traction Motor (Traction Motor 설계에 관한 연구)

  • Kim, Won-Ho;Bae, Jae-Nam;Jang, Ik-Sang;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1395-1401
    • /
    • 2010
  • A paradigm shift in driving system of transportation vehicle from engine to electric motor is required as the problems on air pollution and drain of petroleum resource are on the rize. Moreover while it is possible to control the motor with variable frequency driver, the application of motor in various kinds of vehicles is spread rapidly. In the paper, the effective design method of IPMSM for EV and HEV by using equivalent magnetic circuit and finite element method (FEM) is suggested. First of all, load conditions of the application are calculated. And basic design process of IPMSM is proposed with two design point. Finally, in order to verify the proposed design process, it was compared with the basic design parameter and the FEM analysis results.

  • PDF

A Basic Study on the Development of GHG Emission Factor from Diesel-Powered Railcars in Korea (국내 디젤철도차량의 온실가스 배출계수 개발방향 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Gyu;Rhee, Young-Ho;Lee, Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2258-2261
    • /
    • 2010
  • Since national mid-term target for GHG reduction was determined in 2009, various efforts in transportations have been prepared. Generally, the GHG emission of transportation is calculated using the emission factor published from IPCC guideline(2006). However, it is necessary to develop new emission factors considering the properties of transportation as well as fuel. In Korean railroad, main emission sources are the consumption of diesel and electricity from railcar operation. The GHG emission of electric-powered railcars can be estimated using national electric emission factor, but diesel-powered railcars show different trends. The purpose of this study was to establish the development plans of emission factors for diesel-powered railcars. As a result, the emission factors of diesel-powered railcars were classified into railcar type, engine type and life cycle, notch, load, and traffic volume. In future, several emission factors with this category will be presented quantitatively through field tests with the order of priority.

  • PDF

Multi-level Scheduling Algorithm Based on Storm

  • Wang, Jie;Hang, Siguang;Liu, Jiwei;Chen, Weihao;Hou, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1091-1110
    • /
    • 2016
  • Hybrid deployment under current cloud data centers is a combination of online and offline services, which improves the utilization of the cluster resources. However, the performance of the cluster is often affected by the online services in the hybrid deployment environment. To improve the response time of online service (e.g. search engine), an effective scheduling algorithm based on Storm is proposed. At the component level, the algorithm dispatches the component with more influence to the optimal performance node. Inside the component, a reasonable resource allocation strategy is used. By searching the compressed index first and then filtering the complete index, the execution speed of the component is improved with similar accuracy. Experiments show that our algorithm can guarantee search accuracy of 95.94%, while increasing the response speed by 68.03%.

Vibration reduction of provision crane in a ship by structural dynamic modification (구조변경을 통한 선박용 Provision Crane의 진동저감)

  • 김극수;조성재;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.433-437
    • /
    • 2004
  • A provision crane is generally installed on the upper deck to the rear of the accommodation of the ship in order to load and unload engine part or something heavy. There are two types of provision cranes: one is jib-type and the other is monorail-type. So the natural frequency of the jib-type crane equipment is low, therefore, there are some possibility of resonance between crane structure and the main excitation sources of the ship in normal operating range. This study describe a vibration reduction technique for provision crane by applying a proper countermeasure through finite element analysis and modal test. In order to find out weak point in design of provision crane, a sensitive analysis has been performed.

  • PDF

Multi-Stage Cold Forging Process Design with A* Searching Algorithm (탐색 알고리즘을 이용한 냉간 단조 공정 설계)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF