• Title/Summary/Keyword: Engine block

Search Result 168, Processing Time 0.026 seconds

Conceptual Design of the Fuel Injection Valve Tester for ME-LGI Marine Engine by Using System Engineering (ME-LGI 선박엔진용 연료분사밸브 테스터 개발을 위한 시스템 엔지니어링 기반 개념 설계)

  • Noh, Hyonjeong;Kang, Kwangu;Bae, Jaeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • As environmental regulations have been strengthened and high fuel efficiency has been in demand in recent years, the number of ships using natural gas as a fuel is increasing. The demand for ships using LPG or methanol, which are emerging as eco-friendly vessel fuels, is also increasing. In this perspective, ME-LGI engines using LPG or methanol as a fuel have attracted considerable attention. Ships equipped with an ME-LGI engine are required to check the reliability of the fuel injection valve during shipping. This means that the development of a fuel injection valve tester is essential for the commercialization of ME-LGI engine. This study conducted the conceptual design of a fuel injection valve tester for ME-LGI engines using a system engineering process in the order of requirements analysis, functional analysis, and design synthesis. In the requirement analysis stage, the operating process of fuel injection valve was analyzed, and the necessity of checking the sealing oil leakage was then derived. In the functional analysis stage, the functions and flow of them were defined at each functional level. In the design synthesis stage, the equipment for each function was set and the process block diagram based on it was derived. In addition, preliminary risk analysis was performed as a part of system analysis and control, and safety measures were added to the conceptual design. This study is expected to be a good reference material for the concept design of other systems in the future because it shows the application process of a system engineering process to the conceptual design in detail.

Cycle Resolved NO Emissions and Its Relation with Combustion Chamber Pressure in an S.I. Engine with Fast Response NO Analyzer

  • Sung, Jung-Min;Kim, Hyun-Woo;Lee, Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1563-1571
    • /
    • 2003
  • A fast response NO analyzer was applied to investigate the relation between cycle-by-cycle NO emissions and combustion chamber pressure. NO emissions were sampled at an isolated exhaust manifold of 4-stroke spark ignition engine to avoid the interference of exhaust gas from other cylinders. The linear correlation analysis was performed with collected data of NO emissions and combustion chamber pressure with respect to the various air-fuel mixture ratios and engine loads. The sampled data sets were obtained during 200 cycles at each operating condition. The results showed that there was a typical pattern in NO emissions from an exhaust port through a cycle. It was possible to set a block of crank angle in which the linear correlation coefficient between NO emissions and combustion chamber pressure was high. As the engine load increased, NO emissions were more dependent on combustion chamber pressure after TDC. It was also analyzed that the correlation between two parameters with respect to air-fuel mixture ratio tended to increase as mixture went leaner. Furthermore, this correlation coefficient for the mixture near the lean limit seemed to be kept high even though combustion was unstable.

Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine (고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가)

  • Kim, InSeob;Yoon, Hyunwoo;Kim, Junseong;Vuong, QuangDao;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

Simple Design Method of the Engine Enclosure Considering Cooling and Noise Reduction (냉각과 소음을 고려한 엔진 차폐 구조의 간편한 설계 방법)

  • 최재웅;김관엽;이희준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.184-188
    • /
    • 1999
  • Noise regulation of heavy construction machinery is getting stricter: 3 dB per every 4 year in European community. To meet this requirement many engineers have adopted the enclosing structures with thick absorbing materials and small opening, This increases internal temperature of the enclosure which have engine systems such as electric equipment that are vulnerable to heat, and engine block and muffler that can be regarded as heat sources. So noise control engineers have to consider a coupling problem: combining heat balance and noise reduction. This paper describes this approach by introducing simple heat transfer theory and SEA. The enclosing system of the loader whose enclosing structure consists of two rooms is investigated to show the validity of this method. The results represent that the simple heat transfer theory can be useful to estimate cooling performance when it is linked together by the back pressure theory in duct system. and the radiated noise can also be estimated by the SEA. Therefore a designer can use these approaches to define the opening ratio of an enclosure and the mass flow rate of air considering radiating noise.

  • PDF

The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration) (내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

A Model of Collision Point to Estimate Impact Force Related to Piston Slap (피스톤 슬랩 충격력 예측을 위한 충돌점 모델)

  • 조성호;안상태
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.474-479
    • /
    • 2000
  • Piston slap is not only one of the major sources of noise and vibration in internal combustion engines but also a cause of the deterioration of engine performance. The basic mechanism associated with the piston slap seems to be quite simple but the phenomenon is in fact complicated with regard to many mechanical elements associated, First of all the impact force of piston slap must be identified to estimate engine block surface vibration, In this paper model of collision point is proposed to calculate the impact force when slap surface vibration. In this paper model of collision point is proposed to calculate the impact force when slap occurs. The parameters of the model are estimated by employing the concept of point mobility, . The predicted and experimentally observed vibration results confirm that the proposed method is practically useful.

  • PDF

The Development of Automatic Correction Algorithm for the Knocking Threshold in Spark Ignition Engine (스파크 점화기관에서의 노킹판단 기준값의 자동수정 알고리즘 개발)

  • 강성현;장광수;서정인;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.32-41
    • /
    • 1999
  • In this study, a new knocking control algorithm was developed using the knock threshold value auto-correction algorithm. This algorithm uses the Fast Fourier Transform9FFT) method by measuring cylinder block vibration signals of a 1498 cc four-cylinder spark ignition engine. The experimental results show the proposed knock control algorithm provides improved performance compared to existing methods. The results also show that the proposed FFT algorithm provides real-time adjustment of the knock threshold value.

  • PDF

선박에 있어서의 내연기관구동발전기의 속도안정도에 관한 연구

  • 하주식;노창주
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 1975
  • The speed characteristics of the diesel engines driving alternators are very important because it is directly concerned to the quality of electric power especially when electric power is supplied by a single alternator. In this paper, the speed characteristics of th diesel engine, equipped with a centrifugal mechanical governor, driving an alternator is dealt when load changes stepwise. The all coefficients included in the block diagram of the speed control system are estimated by actual experiments and the effects of gain change of the governor in the speed characteristics are examined theoretically and experimentally. The obtained result seems to be satisfactory and very useful for the improvement of quality of electric power supplied by a single alternator driven by the diesel engine especially for electric power system of ships.

  • PDF

Study on Quantitative Analysis of Wear Debris for Surface Modification Layers Ti(C,N) with Piston Ring on Diesel Engine Oil

  • Choi, Nag-Jung;Youn, Suk-Bum;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1044-1051
    • /
    • 2009
  • During contact between surfaces, there is wear and the generation of wear. The particles contained in the lubricating oil carry detailed and important monitoring information about the condition of the machine. Therefore, this paper was undertaken for the Ferrography system of wear debris generated from a lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of the Pin and V-Block types by Ti(C,N) coated. It was shown from the test results that wear particle concentration(WPC), wear severity index(Is) and size distribution have come out all higher with increases in sliding friction time. With the Ferrogram thin leaf wear debris as well as ball and plate type wear particles were observed.