• Title/Summary/Keyword: Engine Test Facilities

Search Result 27, Processing Time 0.023 seconds

Infrastructure of Propulsion Test Facility of Liquid Rocket (액체로켓 추진기관 시험설비 기반시설 고찰)

  • Cho, Namkyung;Kim, Sunghyuk;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • Liquid rocket propulsion test facility should provide for the interface condition installed on the upper level system for the test article. In addition, safety provision should be provided to be ready for accident such as explosion which can be occurred during development stage. For this purpose infra-structures of test facilities must be constructed so that stable combustion test can be performed and be guard against accidents. In this article, various aspects for infrastructures of propulsion test facilities are investigated including architecture and civil engineering aspects, test stand, room arrangements, interfaces among facilities, fire-fighting facilities, electrical power facilities.

Design and Lay Out of Propulsion Test Facilities for KSLV-II (한국형발사체(KSLV-II) 추진기관 시험설비 배치 및 설계)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.56-61
    • /
    • 2011
  • The deign and lay-out of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine test facility for 3rd stage engine(SReTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of engine component, 3rd stage engine system and 75ton-class liquid rocket engine system will be performed in CTF, TPTF, SReTF, ReTF and HAReTF and the development test of 1st/2nd/3rd propulsion systems for KSLV-II will be performed in PSTC. These propulsion test facilities will be built in NARO space center considering construction schedule, cost, safety distance and utility factor of propulsion test facilities.

  • PDF

Technical Review of Heavy Test Facilities of Liquid Rocket Propulsion System (액체추진기관 대형시험설비 기술동향)

  • Yu, Byung-Il;Kim, Ji-Hoon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.814-815
    • /
    • 2010
  • Korea Aerospace Research Institute plan to develop propulsion system test facilities for combustor, engine system, propulsion systems of KSLV-II propulsion system in process of Korea Space Launch Vehicle project. By review for heavy test facilities specifications of foreign technically developed nations of the world, it will be referenced for test facility development plan of Korea Space Launch Vehicle project in the future.

  • PDF

Scramjet Research at JAXA, Japan

  • Chinzei Nobuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.1-1
    • /
    • 2005
  • Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.

  • PDF

Introduction to Construction of Propulsion Test Facilities for KSLV-II (한국형발사체 추진기관 시험설비 구축에 대한 소개)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.343-346
    • /
    • 2010
  • The construction plan of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of 75ton-class liquid rocket engine system and engine component will be performed in CTF, TPTF, ReTF and HAReTF and the development test of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II will be performed in PSTC. These propulsion test facilities will be built in NARO space center considering construction schedule, cost, safety distance and utility factor of propulsion test facilities.

  • PDF

Management of Test Facility for Tests of Liquid Rocket Engine on Off-Design Condition (액체로켓엔진 탈설계 조건 시험을 위한 시험설비 운용)

  • Yu, Byungil;Kim, Hongjip;Han, Yeongmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.91-99
    • /
    • 2020
  • A liquid rocket engine goes through many tests to prove its performance before liftoff. It means the tests for setting ignition and start-up conditions or a test on design condition, which verifies the design performance. However, the development process requires verification of performance under off-design conditions through tests involving different operating conditions, which affects the duration of engine development. The off-design performance test is performed by altering the conditions of the propellant supplied to the engine in conjunction with the engine performance test that varies the opening of the control valves in the engine. This paper is based on the results of the engine tests performed at the KSLV-II engine test facilities in the Naro Space Center and describes the operations of the test facility for off-design condition test that changes the inlet conditions of the turbo-pump due to changes in the pressure and temperature of the propellant supplied to the test engines.

Analysis of Filtration Characters Ceramic filter Collectors for PM removal of Diesel Engine exhaust gas (디젤엔진 배기가스의 PM저감용 세라믹필터 집진장치 여과특성에 관한 연구)

  • Lee, K.S;Kim, Ki ho;Oh, Jeong won;Lee, Young pill
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.151-152
    • /
    • 2012
  • Collectors connected to diesel engine exhaust pipe for application of PM reduction facilities which was used to reduce PM from the exhaust gas produced from ship, Filtration performance of PM was tested. In this system, it was confirmed that the bag house can remove over 90 percent of PM from a lot of high temperature and high pressure gases produced in diesel engine. The results obtained from performance test show the potential possibility for commercialization of ceramic filter collectors which is applied to reduction facilities of flue gas produced from a diesel engine on the ship.

  • PDF

Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility (추진시험설비의 사고피해영향분석 및 리스크 감소방안)

  • Shin, Ahn-Tae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.360-366
    • /
    • 2016
  • The Propulsion Test Facilities for the development of Korea Space Launch Vehicle-II are being built, some test facilities are completed and various combustion tests are running. The Propulsion Test Facilities consists test-stand, which carries out tests for engine development model, and various sub-systems and vessels containing LOX and Jet A-1 as propellant. There are always risks of fire and explosion at the test-stand since engine development model is conducted at test-stand with real combustion test with very high pressure, mixed propellant and high energy. In this paper, in order to establish the consequence analysis and risk reduction measures in the Propulsion Test Facilities, followings are considered. 1) a propellant leak accident scenario is assumed in test-stand. 2) TNT equivalent model equation based on blast wave of the explosion was used to analyze blast overpressure and impacts. Also, technical, systematic and managemental measure is described to ensure risk reduction for propulsion test facility.

Overview of "Glean Engine Technology Development Project" at Japan Aerospace Exploration Agency

  • Hayashi, Shigeru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.870-875
    • /
    • 2004
  • In Japan, a long-waited civil aero engine development project has been recently started by the New Energy and Industrial Technology Development Organization, NEDO. “High efficiency,” “environmentally friendliness” and “low-cost” are the key words of the target engine. The target engine is of l0000-lb thrust with project consists of three phases: Feasibility studies and market research in the first phase, FY 2003, engine component development in the second phase, FY 2004-2006, and core and full engine demonstrators in the third phase, FY 2007-2009. In league with this government/industry joint funded project, Institute of Space Technology and Aeronautics, JAXA, has initiated “Clean Engine Technology” project.

  • PDF