• 제목/요약/키워드: Engine Stability

Search Result 431, Processing Time 0.024 seconds

Development of Sensing System for an Engine Oil Deterioration Detection Sensor Integrated with an Oil Filter (오일필터 일체형 엔진오일 퇴화감지센서용 센싱시스템 개발)

  • Chun, Sang-Myung
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The purpose of this study is to develop a sensing system to measure the capacitance of a pre-developed engine oil deterioration detection sensor integrated with an oil filter. To measure the capacitance of engine oil in the sensor, it is used the way measuring the electric charging time in a capacitor by impressing DC volt. This method has merits on cost and signal stability. The measured capacitance is compensated by comparison with the one measured by an impedance analyzer. Also, using the dielectric constant gained by an impedance analyzer, the calculating equation of the dielectric constant of engine oil related with the currently developed sensor is decided. Finally, the degradation degree of engine oil is estimated according to the change rate of dielectric constant between green oil and used oil. The newly developed personal controller is to control a series of the processes.

Study on Engine Performance and Characteristics of Exhaust Gas Properties according to various EGR Feeding Methods in LPLi Engine (EGR 유입방식에 따른 LPLi 엔진 성능 및 배기 배출물 특성에 관한 연구)

  • 곽호철;명차리;박심수;천동필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-14
    • /
    • 2003
  • Recently, LPG has been considered as more environmental friendly fuel than liquid fuels for vehicles. However because LPLi engine has the strong point that not only increases the volumetric efficiency and cold startability, but also decreases unburned hydrocarbon exhaust emission in warm-up condition, much attention has moved to development of the Liquid Phase LPG injection (LPLi) system from the mixer type LPG engine. To reduce exhaust NOx, this study investigated the effect of EGR with LPLi engine and determined optimized EGR feeding position and distribution. In addition, engine stability, performance, and exhaust emission level were evaluated.

Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine (고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가)

  • Kim, InSeob;Yoon, Hyunwoo;Kim, Junseong;Vuong, QuangDao;Lee, Donchool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation (모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가)

  • Kwanwoo Lee;Junheon Yoon;Suhan Park;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

Combustion Stability Evaluation of 30 ton-f Class Liquid Rocket Engine Combustor (30톤급 엑체로켓엔진 연소기의 연소안정성 평가)

  • Lim, Byoung-Jik;Lee, Kwang-Jin;Kim, Mun-Ki;Kang, Dong-Hyuk;Yang, Seung-Ho;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents pressure fluctuation characteristics of a 30 ton-f class liquid rocket engine combustor. Combustion stability of the combustor was evaluated using the results 46 firing tests performed with a varying O/F ratio and chamber pressure. The RMS value of pressure fluctuation during the steady state combustion was less than 2.6% of the static chamber pressure, demonstrating static stability of the combustion phenomenon. The decay time of pressure fluctuation caused by forced disturbance of a pulse gun was found to be less than 3.5 msec verifying dynamic stability of the combustor.

  • PDF

Combustion Stability Characteristics of the Model Chamber with Various Configurations of Triplet Impinging-Jet Injectors

  • Sohn Chae-Hoon;Seol Woo-Seok;Shibanov Alexander A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.874-881
    • /
    • 2006
  • Combustion stability characteristics in actual full-scale combustion chamber of a rocket engine are investigated by experimental tests with the model (sub-scale) chamber. The present hot-fire tests adopt the combustion chamber with three configurations of triplet impinging-jet injectors such as F-O-O-F, F-O-F, and O-F-O configurations. Combustion stability bound-aries are obtained and presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio. From the experimental tests, two instability regions are observed and the pressure oscillations have the similar patterns irrespective of injector configuration. But, the O-F-O injector configuration shows broader upper-instability region than the other configurations. To verify the instability mechanism for the lower and upper instability regions, air-purge acoustic test is conducted and the photograph or the flames is taken. As a result, it is found that the pressure oscillations in the two regions can be characterized by the first impinging point of hydraulic jets and pre-blowout combustion, respectively.

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.

Effects of Different Averaging Operators on the Urban Turbulent Fluxes (평균 방법이 도시 난류 플럭스에 미치는 영향)

  • Kwon, Tae Heon;Park, Moon-Soo;Yi, Chaeyeon;Choi, Young Jean
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.197-206
    • /
    • 2014
  • The effects of different averaging operators and atmospheric stability on the turbulent fluxes are investigated using the vertical velocity, air temperature, carbon dioxide concentration, and absolute humidity data measured at 10 Hz by a 3-dimensional sonic anemometer and an open-path $CO_2/H_2O$ infrared gas analyzer installed at a height of 18.5 m on the rooftop of the Jungnang KT building located at a typical residential area in Seoul, Korea. For this purpose, 7 different averaging operators including block average, linear regression, and moving averages during 100 s, 300 s, 600 s, 900 s, and 1800 s are considered and the data quality control procedure such as physical limit check and spike removal is also applied. It is found that as the averaging interval becomes shorter, turbulent fluxes computed by the moving average become smaller and the ratios of turbulent fluxes computed by the 100 s moving average to the fluxes by the 1800 s moving average under unstable stability are smaller than those under neutral stability. The turbulent fluxes computed by the linear regression are 85~92% of those computed by the 1800 s moving average and nearly the same as those computed by 900 s moving average, implying that the adequate selection of an averaging operator and its interval will be very important to estimate more accurate turbulent fluxes at urban area.

A STUDY ON THE ENGINE PERFORMANCE OF A SPARK IGNITION ENGINE ACCORDING TO THE IGNITION ENERGY

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • The more or less homogeneous fuel-air mixture that exists at the end of the compression process is ignited by an electric ignition spark from a spark plug shortly before top dead center. The actual moment of ignition is an optimization parameter; it is adapted to the engine operation so that an optimum combustion process is obtained. Brake mean effective pressure (BMEP) of the spark ignition energy control device (IECD) than conventional spark system at the stoichiometric mixture is increased about 9%. For lean burn engine, the lean limit is extended about 25% by using the IECD. It was considered the stability of combustion by the increase of flame kernel according to the high ignition energy supplies in initial period and discharge energy period lengthen by using the IECD.

An Experimental Study of the Effect of PDA valve on the Combustion Characteristics of the Spark Ignition Engine (PDA 밸브가 SI 엔진의 연소특성에 미치는 영향에 대한 실험적 연구)

  • 김대열;한영출
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.104-112
    • /
    • 2004
  • The Swirl is one of the important parameters that effects the characteristics of combustion. PDA valve has been developed to satisfy two requirements of achieving sufficient swirl generation for improving the combustion and still maintaining high volumetric efficiency. This paper presents the experimental results of the effect of PDA valve on characteristics of combustion in single cylinder spark ignition engine. As a result, the combustion stability can be greatly improved by PDA valve. The data from present study are available for design of engine as the basic data.