• Title/Summary/Keyword: Engine Performance Test

Search Result 947, Processing Time 0.023 seconds

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part II: Steady State-mode Ground Hot-firing Test) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part II: 정상상태 지상연소시험))

  • Kim, Min Cheol;Kim, Young Jin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • A performance evaluation of the 200 N-class GCH4/LOx small rocket engine was performed through ground hot-firing test. As a result, the combustion pressure and thrust raised with the increase of the oxidizer supply pressure, and thus the specific impulse, characteristic velocity, and their efficiency increased. The characteristic velocity was measured at about 90% performance efficiency. The change of chamber aspect ratio did not affect the performance of the rocket engine in the test condition specified. In addition, uncertainty evaluation was conducted to ensure the reliability of the test results.

Preliminary Design of Liquid Rocket Engine Test Facility (액체로켓엔진 연소시험설비 예비설계)

  • Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.885-891
    • /
    • 2011
  • This paper describes the results of preliminary design of rocket engine test facility for the performance evaluation of liquid rocket engine. Design specification and composition of rocket engine test facility are suggested based on the design requirements. The results of the preliminary design of rocket engine test facility will be used as base data for the detail design and construction of rocket engine ground test facility of KSLV-II 75tonf liquid rocket engine.

  • PDF

Development of Liquid Rocket Engine Test Facility (한국형발사체 엔진 지상 연소시험설비 개발)

  • Kim, Seung-Han;Chung, Yong-Gap;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.479-483
    • /
    • 2012
  • This paper describes the development status of rocket engine test facility for the performance evaluation of liquid rocket engine of KSLV-II 1st stage. Design specification and composition of rocket engine test facility are suggested based on the design requirements. The results of the basic design of rocket engine test facility will be used as base data for the detail design and construction of rocket engine ground test facility of KSLV-II 75tonf liquid rocket engine.

  • PDF

Effects of the Flow Characteristics of Helical Intake Port on the Performance and Emission in a Turbocharged DI Diesel Engine. (나선형 흡기포트의 유동특성이 과급식 디젤엔진의 성능 및 배출가스에 미치는 영향)

  • 윤준규;양진승;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.86-96
    • /
    • 2000
  • This study is to consider that the helical intake port flow and fuel injection system have effects on the characteristics of engine performance and emissions in a turbocharged DI diesel engine of the displacement 9.4L. The swirl ratio for ports was modified by hand-working and measured by impulse torque swirl meter, For the effects on performance and emission, the brake torque, BSFC were measured by engine dynamometer and NOx, smoke were by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased, And as the swirl is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by the following applied parameter; the swirl ratio is 2.43, injection timing is BTDC $13^{\circ}$CA and compression is 15.5.

  • PDF

Pressure Control of Staged Combustion Liquid Rocket Engine (다단연소사이클 액체 로켓엔진의 압력제어에 대한 연구)

  • Hwang, Changhwan;Lee, Kwangjin;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;Lee, Jungho;Yoo, Byungil;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.18-23
    • /
    • 2018
  • For the control of pre-burner combustion pressure, the open angle of the TTR (Throttle for Thrust Regulation) valve was varied from $143^{\circ}$ to $185^{\circ}$ while testing cold flow, ignition, and combustion. The major performance variables of rocket engines and hydraulic performance of the TTR valve regarding the open angle were verified. However, the controllability of pre-burner combustion pressure was not verified due to the limitations of the test. Comprehensive research will be done after addressing these problems.

Effects of Breath and Exhaust on the Performance of a Reciprocating Engine for Small Aircraft (소형항공기용 왕복엔진의 성능에 관한 흡/배기 영향)

  • 김근배;김근택;최선우
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.37-40
    • /
    • 2002
  • The engine performance test was carried out to investigate the effects of breath and exhaust on the performance of a reciprocating engine for small aircraft. In this test, three valves to control flow areas of a inlet and two outlets were used, the engine manifold pressure and the static thrust of propeller were measured in nine breath/exhaust conditions. Generally, small variations on the performance were showed as the test conditions were changed. The manifold pressure was increased as flow area of the inlet or the outlet was decreased in normal condition, however it was decreased as both flow areas were decreased. The static thrust of propeller was showed similar as the manifold pressure.

  • PDF

A Study on the Performance Improvement of Diesel Automobile Engine with Ultrasonic Fuel Feeding System(II)-On the Spray Characteristics and Engine Performance- (초음파 연료분사장치용 디젤자동차의 성능향상에 관한 연구(II)-분무특성과 기관성능에 대하여-)

  • Yang, J.K.;Jung, J.D.;Ryu, J. I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.50-56
    • /
    • 1994
  • This is an experimental study on the performance characteristics of Diesel Automobile with ultrasonic fuel feeding system. For this purpose, ultrasonic fuel feeding system was made and atomization characteristics was measured. Base on this result, carried out engine dynamometer test to investigate the performance characteristics of diesel automobile with ultrasonic fuel feeding system in comparison with conventional diesel fuel injector. The results are as follows. 1) In the spray characteristics test, fuel particle sizes were decreased about 11%~21%. 2) In engine dynamometer test, -The power was increased about 5%~11%. -The thermal efficiency was improved about 6%~11%. -The specific fuel consumption was improved about 6%~19%. -The smoke concentration was decreased about 11%~50%.

  • PDF

A Microcomputer-Based Data Acquisition/Control System for Engine Performance Test(II) -Construction and Evaluation of a Load Simulation System- (마이크로컴퓨터를 이용(利用)한 엔진 성능시험(性能試験)의 자동화(自動化)에 관한 연구(硏究)(II) -모의(模擬) 부하시험(負荷試験) 시스템의 구성(構成) 및 평가(評價)-)

  • Ryu, K.H.;Bae, Y.H.;Yoon, K.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • This study was carried out to develop a system and methodology to simulate the engine load variation occuring during agricultural field operations for a laboratory engine test. The system consisted of an electric dynamometer, an Apple II microcomputer, and a data acquisition and control system. Several pieces of instruments were utilized to measure various engine performance data. Both engine torque and engine speed were fully controlled by a computer program. The dynamic characteristics of the system were analyzed through a series of tests and the limitations on the load simulation test were presented. The results of the study are summarized as follows: 1. Engine speed and toque were controlled by a computer program. The use of a stepping motor and reduction gears enabled engine speed be controlled within 1 rpm. 2. The natural frequency of the dynamometer-engine system was found to be around 5 Hz, at which the load simulation would be impossible because of resonance. 3. For the harmonic inputs with the frequencies above the natural frequency, the signal attenuated too much and therefore the load simulation was impossible. 4. The step response of the system showed an overshoot of 24.5 percent and the settling time for 5 percent criterion was around 3 seconds. 5. When actual field test data are utilized for load simulation, a low-pass filter should be included to attenuate the frequency components around and above the natural frequency.

  • PDF

Study on the Humidity Effect on Gas turbine Engine Performances (습도가 엔진성능에 미치는 영향에 대한 실험적 고찰)

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, Soo-Seok;Kim, Chun-Taek
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • The moisture in the atmosphere exerts a lot of influence upon Gas turbine engine performances. There is a noticeable influence of wet air at the summer sea level, high flight mach number and low engine rpm increasingly. An altitude Engine Test Facility is used to accomplish the engine performance tests at dry air condition and wet air condition, through which engine performance results is revealed. Also, Gas turbine Simulation Program is used to predict the variation of engine performance due to inlet humidity. In the result, net thrust and specific fuel consumption measured -2.826% and 1.325%, respectively at wet air condition compared to dry air condition.