A Microcomputer-Based Data Acquisition/Control System for Engine Performance Test(II) -Construction and Evaluation of a Load Simulation System-

마이크로컴퓨터를 이용(利用)한 엔진 성능시험(性能試験)의 자동화(自動化)에 관한 연구(硏究)(II) -모의(模擬) 부하시험(負荷試験) 시스템의 구성(構成) 및 평가(評價)-

  • 류관희 (서울대학교 농과대학 농공학과) ;
  • 배영환 (순천대학 농학부 농업기계공학과) ;
  • 윤기직 (서울대학교 대학원 농공학과)
  • Published : 1989.03.31

Abstract

This study was carried out to develop a system and methodology to simulate the engine load variation occuring during agricultural field operations for a laboratory engine test. The system consisted of an electric dynamometer, an Apple II microcomputer, and a data acquisition and control system. Several pieces of instruments were utilized to measure various engine performance data. Both engine torque and engine speed were fully controlled by a computer program. The dynamic characteristics of the system were analyzed through a series of tests and the limitations on the load simulation test were presented. The results of the study are summarized as follows: 1. Engine speed and toque were controlled by a computer program. The use of a stepping motor and reduction gears enabled engine speed be controlled within 1 rpm. 2. The natural frequency of the dynamometer-engine system was found to be around 5 Hz, at which the load simulation would be impossible because of resonance. 3. For the harmonic inputs with the frequencies above the natural frequency, the signal attenuated too much and therefore the load simulation was impossible. 4. The step response of the system showed an overshoot of 24.5 percent and the settling time for 5 percent criterion was around 3 seconds. 5. When actual field test data are utilized for load simulation, a low-pass filter should be included to attenuate the frequency components around and above the natural frequency.

Keywords

Acknowledgement

Supported by : 한국과학재단