• 제목/요약/키워드: Engine Oil

검색결과 870건 처리시간 0.026초

가솔린 엔진에서 연료 분사량 및 오일 온도에 따른 피스톤 마찰손실 특성 연구 (Study on the Characteristics of Piston Friction Losses for Fuel Injected Mass and Oil Temperature in a Gasoline Engine)

  • 강종대;조진우;박성욱
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.161-166
    • /
    • 2022
  • To measure the change in friction loss due to the control of fuel mass and oil temperature in a gasoline engine, the floating liner method was used to measure the friction generated by the piston of a single-cylinder engine. First, to check the effect of combustion pressure on friction, the friction loss was measured by adjusting the fuel mass. It was confirmed that the friction loss increased as the fuel mass increased under the same lubrication conditions. In addition, it was confirmed that the mechanical efficiency decreased as the fuel mass increased. Next, to check the effect of lubrication conditions on friction, the friction loss was measured by controlling the oil temperature. It was confirmed that friction loss increased as the oil temperature decreased at the same fuel mass. As the oil temperature decreases, the viscosity increases, resulting in decreased mechanical efficiency and increased friction loss.

디젤기관의 대체연료로서 폐식용유의 유용성에 관한 연구 (A study on the usability of used vegetable oil as a diesel substitute in diesel engine)

  • 오영택
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.481-488
    • /
    • 1998
  • In recently, lots of researcher have been attached to develope various alternative fuels and to use renewable fuels for solution of the exhaust emission problems. In this study, the usability of used vegetable oil as alternative fuel for diesel engines has been investigated. This paper was compared with the exhaust emissions and performance in diesel engine with used vegetable oil and conventional diesel fuel. Since the vegetable oil includes oxygen of about 10%, it influenced the combustion process strongly. So, the smoke emissions of used vegetable oil were exhausted to be lower than those of diesel fuel. Also, the used vegetable oil was much the same cycle to cycle variation with diesel fuel except $P_{(dP}$d.theta.)max/, but the cycle to cycle variation of used vegetable oil was reduced significantly by preheating of the fuel and swirling of the intake air. It was concluded that used vegetable oil could be utilized effectively as renewable fuel for diesel engine.e.

선박용 연료유와 윤활유의 조합에 의한 락커 형성에 관한 연구 (Study on Lacquer Formation in Combined of Marine Fuel Oil and Marine Lubricant Oil)

  • 홍성호;박종국;류영석
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.86-94
    • /
    • 2015
  • We perform lacquer formation experiments with various combinations of marine fuel oils and lubricant oils. We also investigate the influences of base number (BN) in lubricant oil and sulfur content in fuel oil. A dissolution test with 10% dilute sulfuric acid and pull-off force test are accomplished to distinguish whether the residual layers are lacquering or not. The lacquering layers are dissolved by dilute sulfuric acid and have a strong pull-off force. Moreover, the calcium content detected in the residual layers is compared by energy dispersive x-ray spectroscopy (EDS). More calcium is detected in the lacquer layers than in other residual layers. Distillate fuels containing low sulfur levels are more prone to lacquering when mixed with lubricant oil with a high BN. On the other hand, residual fuels with a high sulfur content do not form lacquer. We investigate the effect of mixture volume ratio. The mixture with higher fuel oil content is more prone to generate lacquer. These experiments indicate that a lubricant with an appropriate BN should be used to prevent lacquer forming on the surfaces such as cylinder liners depending on the sulfur content of fuel oil.

CFD를 이용한 Oil Jet의 노즐부 해석 (A Study on Nozzle of Oil Jet using CFD)

  • 정호윤;권지혁;이종훈;최윤환;이연원
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.205-209
    • /
    • 2005
  • Now a days Automobiles are becoming more important in our life, the study on piston of engine is needed because, piston's cooling and lubrication of piston have an effect on the life and efficiency of engine directly. So, this study is about nozzle part of oil jet for cooling piston in the automotive engine. Piston exposes combustion gas of over $2000^{\circ}C$ and is shocked high pressure at the time of explosion shortly. Furthermore strong friction occurs by high speed rotation. The cooling system is considered from oil jet to piston. The previous system cooled the lower part of piston only. So, efficiency was low. To improve this system, make the oil gallery in the piston, and oil flows into the gallery. The value of oil flow rate into the gallery is important. Consequently, the point of this study is the research of investigation of flow characteristics for variable Re number. This study has been modelled by a commercial CFD code FLUENT, allowing to assess its validity

  • PDF

필드조건, 엔진오일의 종류에 따른 오일성능 분석 (Analysis of Oil Performance by Different Type of Engine Oil In the Field)

  • 김영환;송준희;김한주
    • 에너지공학
    • /
    • 제26권3호
    • /
    • pp.131-136
    • /
    • 2017
  • 자동차 엔진오일은 엔진 시동 시 가장 중요한 윤활제이다. 최근 자동차 회사 와 윤활유 제조업체들은 교환주기를 연장하기 위해 첨가제를 사용하여 오일의 품질을 상당히 개선하고 있다. 대부분의 고객은 자동차 제작사의 정품오일을 사용하거나 전문가의 추천을 받아 사용한다. 본 논문을 통해 소비자가 고효율 윤활유를 선택하는 또 다른 기준점을 제안한다. 본 논문은 7개월 동안 실제 자동차의 운전 조건을 고려하여 오일의 6가지 화합물을 조사 비교 분석하였다. 물리적, 화학적 관점에서 실험을 수행했다. 현장에서 다양한 실험을 통해 광유와 합성유 화합물은 산화, 점도, 유동성 및 TBN에서 크게 구분된다. 이들은 엔진 부품 피스톤, 베어링 등의 마모에 영향을 준다. 다양한 오일을 비교하였을 때 인화점, 산화 안정성에서 합성유의 성능이 좋고 오염 물질인 Fe와 Al 화합물의 변화가 적은 것으로 나타났다. 오일의 첨가제는 광유와 합성유에서 청정분산제 Ca가 확연한 차이를 나타냈다. 극압제 Zn과 윤활 향상제 P는 유사하였다.

Oxidation Stability and Antioxidant Capacity of Lubricants Measured by a Pressure DSC

  • Cerny, Jaroslav
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.359-360
    • /
    • 2002
  • A methodology was developed for evaluation of oxidation stability of base stocks and engine oils. Analytical procedures for both classes of lubricants were based on the ASTM standards D 6186 and/or E 2009. The procedures were applied to a set of engine oils of the SAE 5W-30 specification, and to a set of several hydrocracked and solvent neutral base oils, both with and without addition of antioxidant. A potential of a pressure DSC for diagnostic purposed was also demonstrated by monitoring the engine oil ageing during its operation in heavy-duty engine.

  • PDF

나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능 (The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder)

  • 박권하;최재성;김대현;김영남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

가솔린기관의 밸브트레인 시스템 마찰력측정 시스템개발 (Development of Valve Train Friction Force Measuring System in Gasoline Engine)

  • 윤정의;이만희;김재석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.75-81
    • /
    • 1998
  • It is very important to evaluate the friction force of valve train system in the aspect of reducing friction loss of engine. To this end, we have developed measuring system of friction force of engine valve train system. There were two major factors in the process of development of it. One was it had to accurately measure the friction force up to 3500 Crpm without any problems such as mechanical vibration, electrical noise and so on. The other was it also had to simulate real engine conditions such as Crpm, oil temperature, oil pressure and oil aeration including effect of belt drive system. In this paper we have introduced the process of development of it based on test results, and also analysis process of measured data.

  • PDF

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

전산유체해석을 이용한 엔진윤활시스템 설계 (Engine Lubrication System Design Using Computational Fluid Dynamic Analysis)

  • 윤정의;심병민;한세범;정연두;김동렬;채경덕;황영택;박종원;윤성호;김용태;박병완
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.165-170
    • /
    • 2005
  • Engine lubrication system has very complex oil flow networks. Therefore it is difficult to evaluate and optimize the system only depending on experimental results. When we plan upgrading the engine performance the engine lubrication system must be considered in the plan. In this paper, engine lubrication system design using computational fluid dynamic analysis was studied. To do this, unsteady transient flow network analysis on the engine oil circuit system was carried out. Finally we discussed the design process in the modified engine lubrication system.