• Title/Summary/Keyword: Engine Exhaust Noise

Search Result 127, Processing Time 0.023 seconds

Effects of Exhaust Pipe Curvature on the Exhaust Noise of a Diesel Engine (디이젤 엔진에서 排氣管의 屈曲度가 排氣 騷音에 미치는 影響)

  • 문병수;김옥현;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.392-398
    • /
    • 1986
  • It is often occurred that exhaust pipe of an internal combustion engine should be bent due to some geometrical constraints. Especially for automobiles most of exhaust pipes of engines have curvature to avoid rear axles. In this paper effects of pipe curvature on the exhaust noise of a diesel engine have been studied experimentally. Experiments were carried out on a 4-cycle, 2164cc diesel engine. Two types of curvature, circular arc and retangle, were tested. Sound pressure level (SPL) and power spectrum of the exhaust noise were measured by inserting bent pipes of different curvature dimensions into the exhaust pipe at various engine operating conditions. The following results were obtained from this study. Among the engine operating conditions the exhaust noise was affected mainly by engine revolution speed. The noise was reduced by the circular arc bent pipe. The effectiveness of an arc bent pipe on the noise reduction was dominated by its arc angle and the maximum noise reduction was obtained by the angle of 180.deg.. But the noise reduction could not be obtained by the rectangular bent pipe, and at high engine speed the noise was rather increased due to turbulence of exhaust gas.

Exhaust Noise Control of Marine Diesel Engine Using Hybrid Silencer (조합형 소음기를 이용한 박용 디젤 엔진 배기 소음 제어)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.679-684
    • /
    • 2009
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are ineffective to control exhaust noise because of low absorption in the low frequency range. In the paper, exhaust noise control of marine diesel engine was studied by using the hybrid silencer, which was composed of virtually divided array of concentric hole-cavity resonators and conventional absorptive silencer. A series of tests including field tests were performed to investigate the acoustic performance of the hybrid silencer. Consequently, its high performance of 5${\sim}$10 dB noise reduction in the low frequency range was confirmed and it is expected to be very helpful in reducing the exhaust noise of marine diesel engine.

The Effects of the Combustion Characteristics on the Exhaust System Volume of the SI Engine in Idling (아이들링 시 배기시스템 용적이 SI 기관의 연소특성에 미치는 영향)

  • Noh, Hyung-Chul;Park, Kyoung-Suk;Son, Sung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • We research into the exhaust system volume what proving the optimum exhaust performance and combustion characteristics. Many automobile manufactures have developed complex exhaust system for environment regulation and noise reduction. This complex exhaust system provides acoustics silencing and low frequency noise for customers demand. Recently, automobile exhaust system have made the Dual muffler concerning to the noise and vibration reduction. Also it bring the engine performance down by decreasing the back pressure and temperature in the exhaust system. The experiments are carried out different volume of exhaust system. In order to establish the optimized conditions design factors which are taking exhaust system volume, it show how the exhaust performance influence on the engine performance in idling.

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

A Study on the combustion characteristcs for backpressure of exhaust system in SI engine (배기(排氣)시스템의 배압(背壓)과 연소특성(燃燒特性)에 관한 연구)

  • Park, Dai-Un;Park, Kyoung-Suk;Park, Se-Jong;Son, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.206-212
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile, it is needed to consider the pulsation noise, air current noise, vibration of air pipe which generate the intake and exhaust noise of the automobile. Moreover, the discharge sounds, intake sound, radiation sound, transmitted sound are occurred. To reduce this influence, the variable valve is needed and to control these factors, path transformation muffler and active type muffler are needed. While engine efficiency could be reduced with this transformationand resistance by the pressure, thermal property. In this study, how to design exhaust systems yielding higher condversion efficiency, lower backpressure and optimize the performance. this study is recommended for exhaust system and designers and engineers involved in SI engine exhaust system and it will furnish information for you to design more efficient.

  • PDF

Exhaust Noise Control of Marine Diesel Engine by using Resonator Type Silencer (공명형 소음기를 이용한 박용 디젤엔진 배기 소음 제어)

  • Lee, Tae-Kyung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.350-354
    • /
    • 2008
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are limited because the absorptive material is not effective in low frequency range. In the paper, exhaust noise control of marine diesel engine has been studied by using the resonator type silencer, which was composed of concentric hole-cavity resonators. The acoustic performance of the resonator type silencer was verified by the insertion loss measurement considering flow effect. Consequently, its high performance, about $5{\sim}8dB$ noise reduction, in the low frequency range was confirmed by insertion loss measurements conducted in the ship.

  • PDF

An Experimental Study(I) on the Noise Emission Characteristics of Motor Vehicles Using Sound Intensity Measurement Method -A Case of Engine and Exhaust Noise- (음향 인텐시티 측정법을 이용한 자동차의 소음방사특성에 관한 실험적 연구 I -엔진 및 배기계 부위소음을 중심으로-)

  • 양관섭;유남구;박병전;김영완
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.843-849
    • /
    • 1996
  • Locations and emission characteristics of noise source of motor vehicles are great important factors to control the road traffic noise in effective ways. From results of this study on emission characteristics of engine and exhaust noise, we could find that every noise emission of different kind of vehicles has smilar pattern. The main emission locations of engine noise for the front of vehicle became the space between the road surface and bottom of the body and radiator grill, and for the side of vehicle became the space between the road surface and bottom nearby the front wheel. In case of exhaust noise of passenger-car and light truck, all the highest sound intensity level located near surface of road. But it is hard to conclude the height of noise source of driving vehicles with only results of this study. So further studies are needed to check the emission characteristics of noise.

  • PDF

New Active Muffler System Utilizing Destructive Interference by Difference of Transmission Paths (전달경로의 차이를 이용한 새로운 차량용 능동 머플러의 개발)

  • Hwang, Yo-Ha;Lee, Jong-Min;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.374-379
    • /
    • 2002
  • A new active muffler system has been developed and its superior performance on both noise reduction and engine torque increase is demonstrated with experiment. Main characteristic of the proposed muffler system is the use of destructive interference by transmission path difference of divided exhaust pipes to reduce major exhaust noise components thereby overcoming problems of other active exhaust noise control methods. The exhaust pipe is divided into two sections and joined again downstream. One divided pipe has a sliding mechanism to vary its length, which is controlled to make half wavelength transmission path difference for the major engine rpm frequency. In this system one divided pipe is used to control major rpm frequency and its Harmonics and another pipe is used to control noise component double the frequency of rpm. An after-market tuning muffler, which has very simple internal structure and minimal back pressure, is also installed to remove remaining wideband noise. To make the system to be small enough to be practical, conventional muffler is also installed and used in low rpm range and active muffler is only employed in high rpm range. Noise reduction of the proposed system is comparable to conventional passive muffler. The engine dynamo test has proved the proposed system can recover almost all the torque lost by conventional muffler.

Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow (대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구)

  • Shin, Suk-Jae;Kim, Jong-Il;Jung, Young-Chul;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.

Shape Design of Construction Equipment Tailpipe for Noise Reduction and Engine Room Cooling (소음 및 엔진룸 냉각개선을 위한 건설기계테일파이프의 형상설계)

  • Kim, Seong-Jae;Yang, Ji-Hae;Kim, Nag-In;Kim, Jou-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.737-740
    • /
    • 2004
  • The interior noise reduction of construction equipment is concerned for improving the driver comfort in this study. From the baseline test, the exhaust noise gives a big contribution to the interior noise of construction equipment. And the detail noise contribution analysis of the exhaust system, the tail pipe, which is for ventilation an engine room hot air to outside, amplify the exhaust noise around operating engine RPM associated with tail pipe structural and cavity resonances. To remove the noise amplifying effects, the tail pipe has to be shorted its length. Even the noise can be attenuated the ventilation flux when using the redesigned tail pipe is reduced than the original one. Thus, a shape change of the tail pipe is additionally needed for increasing the ventilation flux and attenuating the exhaust noise using CFD technique. The CFD results of the tail pipe give a meaning full information what obstructs the ventilation flex in the current design and how changes the tail pipe.

  • PDF