• Title/Summary/Keyword: Engine Control System

Search Result 1,324, Processing Time 0.038 seconds

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

A Study on Design and Development of an Engine Control System Based on Crank Angle (크랭크 각 기준의 엔진 제어시스템 설계.제작에 관한 연구)

  • 윤팔주;김명준;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.198-210
    • /
    • 1998
  • A crank angle-based engine control system has been developed for use as an engine research tool to provide precise control of the fuel injection(timing and duration) and ignition(timing and dwell) in real-time. The engine event information is provided by the engine shaft encoder, and the engine control system uses this information to generate spark and injector control signals for relevant cylinders. Eight different engine types and four different rotary encoder resolutions can be accommodated by this system. Also this system allows a user to individually control the ignition and fuel injection for each cylinder in a simple manner such as through a keyboard or in a real-time operation from a closed-loop control program.

  • PDF

Design and implementation of a throttle valve controller for engine dynamometer systems using fuzzy logic (퍼지논리를 사용한 엔진 동력계 시스템의 트로틀 밸브 제어기 설계 및 구현)

  • Shin, Wee-Jae;Lee, Sang-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.588-593
    • /
    • 1997
  • This paper shows a design and implementation of throttle valve controller for engine dynamometer system using fuzzy logic. Recently, we demanded the excellent measuring equipment so as to improve engine performance. The throttle valve control for engine dynamometer system is a very particular part in the engine control. Since the structure of engine dynamometer system is very complicated and has nonlinear elements which are influenced by disturbance of vibration, heating, cooling, and energy loss so on. In this paper, fuzzy logic control application have been successful in throttle valve control problem for engine dynamometer system in which the conventional control had difficulties dealing with the system. In this study, we propose a method that the control strategy uses Fuzzy Look-up table and normalization and obtained the satisfying result from realized throttle valve controller for engine dynamometer system.

  • PDF

An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method (모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

An intelligent Speed Control System for Marine Diesel Engine (선박용 디젤기관의 지능적인 속도제어시스템)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

The Throttle Valve Control of engine Dynamometer system Using Fuzzy Look-up Table (퍼지 Look-up Table을 이용한 엔진 다이나모메타 시스템의 트로틀 벨브 제어)

  • 이상윤;이팔진;신위재;김치원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.125-130
    • /
    • 1995
  • Recently, the vehicle engine requried precision control of Air-Fuel rate and rigid restriction of exhaust gas. Therefore, we demanded excellent measuring equipment so as to improve of engine performance. Specially, throttle valve control is very important part in the engine control, because structure of engine dynamometer system is very important part in the engine control, because structure of engine dynamometer system is very complicate and it has nonlinear elements which is influenced of disturbance about vibration, a heat, a cooling, energy loss so on. In this study, we propose the method that the control technique using Fuzzy Look-up table and we obtained the satisfying result from realized the control system.

  • PDF

Survey on recent technologies for engine control (승용차용 Engine 제어에 관한 기술현황)

  • 하인중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.404-408
    • /
    • 1986
  • While the engine dynamics is, in nature, a uncertain nonlinear system, practical control methods for nonlinear systems are presently limited. This paper discusses important issues of engine control such as fuel economy, exhaust emission control, and driveability. Recent development in engine control technologies is reviewed. New control methods which appear to be useful for engine control are introduced.

  • PDF

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.