• Title/Summary/Keyword: Energy-stable method

Search Result 652, Processing Time 0.028 seconds

Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화)

  • Jang, Myeong Je;Won, Mi So;Lee, Kyu Hwan;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Chon, Mun Soo;Park, Jung-Kwon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module (정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구)

  • Ahn, Tae-Young;Choe, Hyun-Su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • In this paper, results of produced PCU(Power Control Unit) prototype was showed by suggesting and maintaining optimal operation status which let the three functional modules automatically operate with its necessity by prioritizing operation process. In order to validate effectiveness of the suggested method, we produced a test PCU and examined the results. PCU consists of S3R(Sequential Switching Shunt Regulator), BCR(Battery Charge Regulator), and BDR(Battery Discharge Regulator): converting photovoltaic power into constant voltage at linked bus voltage; storing dump power in the battery which is an auxiliary energy storage device; and supplying power charged in battery to the load. To maintain its high reliability and optimal condition of these three power conversion modules, each module operates in parallel and stable bus voltage is required to be retained at all-time due to the nature of power supply for satellite.

Development of Transient Behavior Simulation Tool and Analysis of Gas Turbines (발전용 가스터빈 동적 거동 시뮬레이션 Tool 개발 및 해석)

  • Kim, Jeong Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.13 no.4
    • /
    • pp.48-50
    • /
    • 2017
  • A program for analyzing the transient behaviors of industrial gas turbines was developed. Each component (compressor, combustor, turbine and ducts)of gas turbine is modeled as a fully module to enhance the expandability of the program. We used object-oriented programing for this purpose. The mass and energy balance equations are solved numerically by Multivariable Newton Raphson method. The characteristic maps for the compressor and turbine were used for predicting the performance of a gas turbine engine. Combustion in the combustor is assumed to be complete combustion. PID control is used to maintain constant rotational speed and turbine exhaust temperature by the control of the fuel flow rate and the changing of the compressor inlet guide vane angle at the same time. It was confirmed that stable control of the gas turbine was possible, even for a rapid load change.

  • PDF

A Study on the Development of a Variable Speed Diesel Generator for DC Distribution (직류배전용 가변속 디젤발전기 개발에 관한 연구)

  • Park, Kido;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.117-121
    • /
    • 2019
  • In this study, research and a demonstration for applying DC distribution systems to ships as an environmental and energy conservation solution in domestic and foreign countries were actively carried out. In order to apply a generator to a DC distribution system, a variable speed engine was used. Both engine speed and fuel consumption were reduced. In this paper, a DC generator for DC distribution was constructed using a diesel generator, a generator controller, a governor, and an AVR. A system configuration method for a generator, power quality test, and the power characteristics of a variable speed generator were analyzed. The voltage (250 - 440 VAC) and frequency (34 - 60 Hz) of the variable speed generator were set to 60 - 100 % of the rated value, and the engine was set to operate from 1100 - 1800 rpm. It was confirmed that the voltage, current, and frequency of the generator output fluctuated in a stable manner according to the power amount when changing the engine speed of the generator according to the load variation.

Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method

  • Yucel, Haluk;Zumrut, Senem;Nartturk, Recep Bora;Gedik, Gizem
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.526-532
    • /
    • 2019
  • In this study, an in-house $^{152}Eu$ calibration source was produced from a custom epoxy matrix with a density of ${\rho}=1.14g\;cm^{-3}$, which is chemically stable and durable form after its solidification. The homogeneity of $^{152}Eu$ in matrix was obtained better than 98%. For a Marinelli beaker geometry, an efficiency calibration procedure was applied to a n-type, coaxial, 78.5% relative efficient HPGe detector in the energy range of 121.7-1408.0 keV by using in-house $^{152}Eu$ calibration source. Then the measured efficiencies for Marinelli geometry were compared with the results calculated by MEFFTRAN and ANGLE softwares for the validation. Although MEFFTRAN and ANGLE have two different efficiency transfer algorithms to calculate the efficiencies, they usually need to use a reliable and accurate reference efficiency values as input data. Hence, reference efficiency values were obtained experimentally from a multinuclide standard source for the same detector-Marinelli geometry. In the present source characterization, the corrections required for self-absorption and true coincidence summing effects for $^{152}Eu$ gamma-rays were also obtained for a such close counting geometry condition. The experimental results confirmed the validity of efficiency calculations obtained by MEFFTRAN and ANGLE softwares that are calculation tools.

Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform (Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향)

  • Kwon, Sooyoul;Rorrer, Greg;Semprini, Lewis;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Facile Synthesis of Gold Nanoparticles Using Tyrosine-Rich Peptide and Its Applications to Catalytic Reduction of 4-Nitrophenol (타이로신이 풍부한 펩타이드를 사용한 금 나노입자의 손쉬운 합성과 4-니트로페놀의 촉매 환원 응용)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • In this study, we studied a facile method for the synthesis of stable and nearly spherical gold nanoparticles using a tyrosine-rich peptide, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY), as both the reducing and capping agent. The peptide coated spherical and polycrystalline gold nanoparticles with diameters from 3 to 15 nm were successfully synthesized by varying the concentration of the peptide and metal precursor under UV irradiation. The nanoparticles were then characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Furthermore, the catalytic activity of gold nanoparticles was confirmed by the reduction of 4-nitrophenol to 4-aminophenol, in which the catalytic reaction rate constant was 7.3 × 10-3 s-1.