Browse > Article
http://dx.doi.org/10.14478/ace.2020.1099

Facile Synthesis of Gold Nanoparticles Using Tyrosine-Rich Peptide and Its Applications to Catalytic Reduction of 4-Nitrophenol  

Hur, Yun-Mi (Biomedical Convergence Science and Technology, Kyungpook National University)
Min, Kyoung-Ik (Biomedical Convergence Science and Technology, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.1, 2021 , pp. 15-19 More about this Journal
Abstract
In this study, we studied a facile method for the synthesis of stable and nearly spherical gold nanoparticles using a tyrosine-rich peptide, Tyr-Tyr-Gly-Tyr-Tyr (YYGYY), as both the reducing and capping agent. The peptide coated spherical and polycrystalline gold nanoparticles with diameters from 3 to 15 nm were successfully synthesized by varying the concentration of the peptide and metal precursor under UV irradiation. The nanoparticles were then characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Furthermore, the catalytic activity of gold nanoparticles was confirmed by the reduction of 4-nitrophenol to 4-aminophenol, in which the catalytic reaction rate constant was 7.3 × 10-3 s-1.
Keywords
Peptide; Tyrosine; Gold nanoparticle; Green synthesis; 4-nitrophenol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Burt, C. Gutierrez-Wing, M. Miki-Yoshida, and M. Jose-Yacaman, Noble-metal nanoparticles directly conjugated to globular proteins, Langmuir, 20, 11778-11783 (2004).   DOI
2 C. Berthomieu, and R. Hienerwadel, Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins, Biochim. Biophys. Acta-Bioenerg., 1707, 51-66 (2005).   DOI
3 T. Serizawa, Y. Hirai, and M. Aizawa, Novel synthetic route to peptide-capped gold nanoparticles, Langmuir, 25, 12229-12234 (2009).   DOI
4 Y. S. Seo, E. Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park, Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid, Nanoscale Res. Lett., 12, 7 (2017).   DOI
5 Y. Choi, M. J. Choi, S. H. Cha, Y. S. Kim, S. Cho, and Y. Park, Catechin-capped gold nanoparticles: Green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction, Nanoscale Res. Lett., 9, 103 (2014).   DOI
6 M. Haruta, and M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A-Gen., 222, 427-437 (2001).   DOI
7 J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55-75 (1951).   DOI
8 P. Zhao, X. Feng, D. Huang, G. Yang, and D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles, Coord. Chem. Rev., 287, 114-136 (2015).   DOI
9 K. G. Lee, J. Hong, K. W. Wang, N. S. Heo, D. H. Kim, S. Y. Lee, T. J. Park, and T. J. Park, In vitro biosynthesis of metal nanoparticles in microdroplets, ACS Nano, 6, 6998-7008 (2012).   DOI
10 J. Zong, S. L. Cobb, and N. R. Cameron, Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications, Biomater. Sci., 5, 872-886 (2017).   DOI
11 A. Saha, J. Adamcik, S. Bolisetty, S. Handschin, and R. Mezzenga, Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features, Angew. Chem. Int. Ed., 127, 5498-5502 (2015).   DOI
12 Y. C. Yeh, B. Creran, and V. M. Rotello, Gold nanoparticles: Preparation, properties, and applications in bionanotechnology, Nanoscale, 4, 1871-1880 (2012).   DOI
13 P. Suchomel, L. Kvitek, R. Prucek, A. Panacek, A. Halder, S. Vajda, and R. Zboril, Simple size-controlled synthesis of Au nanoparticles and their sizedependent catalytic activity, Sci. Rep., 8, 4589 (2018).   DOI
14 X. Ma, S. He, B. Qiu, F. Luo, L. Guo, and Z. Lin, Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye, ACS Sens., 4, 782-791 (2019).   DOI
15 K. I. Min, D. H. Kim, H. J. Lee, L. Lin, and D. P. Kim, Direct synthesis of a covalently self-assembled peptide nanogel from a tyrosine-rich peptide monomer and its biomineralized hybrids, Angew. Chem. Int. Ed., 130, 5732-5736 (2018).   DOI
16 P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P. S. Shirude, R. Pasricha, A. B. Mandale, and M. Sastry, Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface, Langmuir, 20, 7825-7836 (2004).   DOI
17 J. Xie, J. Y. Lee, D. I. Wang, and Y. P. Ting, Silver nanoplates: From biological to biomimetic synthesis, ACS Nano, 1, 429-439 (2007).   DOI
18 S. Si, R. R. Bhattacharjee, A. Banerjee, and T. K. Mandal, A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine‐based oligopeptides, Chem. Eur. J., 12, 1256-1265 (2006).   DOI
19 V. Paribok, Y. O. Kim, S. K. Choi, G. Y. Jung, J. Lee, K. T. Nam, V. E. Agabekov, and Y. S. Lee, Tailoring a Tyrosine-rich peptide into size-and thickness-controllable nanofilms, ACS Omega, 3, 3901-3907 (2018).   DOI
20 H. I. Joschek and S. I. Miller, Photooxidation of phenol, cresols, and dihydroxybenzenes, J. Am. Chem. Soc., 88, 3273-3281 (1966).   DOI
21 G. K. Deokar, and A. G. Ingale, Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract - An efficient multifunctional agent, RSC Adv., 6, 74620-74629 (2016).   DOI