• Title/Summary/Keyword: Energy-Efficient

Search Result 4,925, Processing Time 0.029 seconds

Clustering Algorithms for Reducing Energy Consumption - A Review

  • Kinza Mubasher;Rahat Mansha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.109-118
    • /
    • 2023
  • Energy awareness is an essential design flaw in wireless sensor network. Clustering is the most highly regarded energy-efficient technique that offers various benefits such as energy efficiency and network lifetime. Clusters create hierarchical WSNs that introduce the efficient use of limited sensor node resources and thus enhance the life of the network. The goal of this paper is to provide an analysis of the various energy efficient clustering algorithms. Analysis is based on the energy efficiency and network lifetime. This review paper provides an analysis of different energy-efficient clustering algorithms for WSNs.

Energy Efficient and Secure Multipoint Relay Selection in Mobile Ad hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1571-1589
    • /
    • 2016
  • Nodes in MANETs are battery powered which makes energy an invaluable resource. In OLSR, MPRs are special nodes that are selected by other nodes to relay their data/control traffic which may lead to high energy consumption of MPR nodes. Therefore, employing energy efficient MPR selection mechanism is imperative to ensure prolonged network lifetime. However, misbehaving MPR nodes tend to preserve their energy by dropping packets of other nodes instead of forwarding them. This leads to huge energy loss and performance degradation of existing energy efficient MPR selection schemes. This paper proposes an energy efficient secure MPR selection (ES-MPR) technique that takes into account both energy and security metrics for MPR selection. It introduces the concept of 'Composite Eligibility Index' (CEI) to examine the eligibility of a node for being selected as an MPR. CEI is used in conjunction with willingness to provide distinct selection parameters for Flooding and Routing MPRs. Simulation studies reveal the efficiency of ES-MPR in selection of energy efficient secure and stable MPRs, in turn, prolonging the network operational lifetime.

REVIEW ON ENERGY EFFICIENT OPPORTUNISTIC ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS

  • Ismail, Nasarudin;Mohamad, Mohd Murtadha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3064-3094
    • /
    • 2018
  • Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design.

Biomimetic Preparation of Boron Nitride /PMMA Composite (생체모방기술을 이용한 Boron Nitride /PMMA 복합체 제조)

  • Nam, Kyung Mok;Lee, Yoon Joo;Kim, Bo Yeon;Kwon, Woo Teck;Kim, Soo Ryong;Shin, Dong Geun;Kim, Young Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.103-106
    • /
    • 2014
  • Nacre is an organic-inorganic composite material; it is composed of $CaCO_3$ platelet and protein. The microstructure of nacre is a matrix that is similar to bricks and mortar. Technology inspired by nature is called biomimetic technology. In this study, to make high thermal conducting ceramic composite materials using biomimetic technology, a porous green body was prepared with BN platelets. PMMA was infiltrated into the porous green body to make a composite. The microstructure of the composite was observed with FESEM, and the thermal properties were measured. The thermal conductivity of the prepared organic-inorganic composite was 4.19 $W/m{\cdot}K$.

Efficient Energy Management for Pyro-processing of Solids - (1) Heat & Mass Balance and Evaluation (고체 고온공정에서 효율적 에너지 관리 - (1) 공정 열정산 및 평가 방법)

  • Ha, Daeseung;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • Pyro-process of solids is the way to heat solid materials under high temperature. In this processing, energy efficient use is one of the main concerns due to its high energy consumption of bulk materials. To calculate the energy use of processes, heat & mass balance in simplified 0-dimensional model was performed. Energy calculation by this simplified model can lead to confusion due to simplification. Thus, it is necessary to understand considerations of energy analysis. In this study, cement manufacturing as a very common example of pyro-processing of solids, was introduced for explaining considerations of energy analysis for energy efficient use.

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites

  • Kim, Bo-Yeon;Lee, Yoonjoo;Kim, Soo-Ryong;Shin, Dong-Geun;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Natural materials often have unique mechanical properties, such as the hierarchical structure of nacre formed through mineral bridges or asperities created between an inorganic particle and a natural-layer surface. As these asperities produce an exceptional shear resistance, in this study, we aimed to emulate the natural structure of nacre by synthesizing inorganic asperities and mineral bridges with different temperatures in the range of $1100-1300^{\circ}C$ and clay contents from 10 - 50 wt%. Following the infiltration of methyl methacrylate, we measured the mechanical properties to assess whether they were improved by the asperities. It was confirmed that the asperities improved the bending strength by 10%, and the anchoring effect was observed on the fracture surface.

Bio-Inspired Synthesis of a Silicate/PMMA Composite

  • Nam, Kyung Mok;Lee, Yoon Joo;Kwon, Woo Teck;Kim, Soo Ryong;Shin, Dong-Geun;Lim, Hyung Mi;Kim, Hyungsun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.7-10
    • /
    • 2014
  • Abalone shell is composed of 95 wt% $CaCO_3$ platelets and 5 wt% of a protein-rich organic matrix which acts as an adhesive layer, connecting aragonite tablets, thus maintaining the structural integrity of the composite. By mimicking abalone shell, we prepared a silicate plate/polymer nanocomposite by infiltrating PMMA between silicate layers and warm-pressing them at $200^{\circ}C$ for 1 h under 15 tons to make organic-inorganic composite materials. To examine the organic-inorganic composite materials after the warm-pressing procedure, the composite sample was analyzed with FE-SEM and TG. The bending strengths and densities of the composites prepared by a silicate plate and PMMA after the warm-pressing process were ~140 MPa and 1.5, respectively.

Energy Efficient Transmit and Receive Strategies (에너지 효율적인 송수신 운용 방안)

  • Oh, Changyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.3-9
    • /
    • 2014
  • We propose energy efficient transmit and receive strategies for nomadic M2M devices. Recently, communication applications consume more and more battery. Hence, the efficient battery management is becoming increasingly important. Turbo code as a channel coding is being widely used in many communication areas. Accordingly, the efficient energy management in using turbo code is an important issue. In this paper, we optimize joint transmit and receive energy for M2M devices pair. We first model the transmit energy and receive energy. Then, we develop the energy efficient transmit and receive strategies.

A study on the energy efficient operation of economizer cycle control (외기냉방제어의 효율적인 운영에 관한 연구)

  • Lee, H.W.;Leigh, S.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.545-551
    • /
    • 1997
  • As the cooling energy requirement in an office building increases due to the increased internal heat gains, the effort to minimize the energy consumption through efficient operation of existing HVAC systems will be beneficial. In this study, one of the energy conserving efforts in an office building, operational strategies of Economizer Cycle Control have been investigated through DOE-2.1E computer simulation. The findings can be summarized : 1) Economizer Cycle Control saves energy throughout the year, 2) Econo-Limit-T must be applied seasonally based on the outside and return air conditions, 3) use of Enthalpy control is more energy efficient than that of Temperature control.

  • PDF