• Title/Summary/Keyword: Energy structure

Search Result 8,003, Processing Time 0.04 seconds

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Analysis Actual Conditions of Arid Progress and Prevention Management of Hwaeom Wetland in Yangsansi (양산시 화엄늪의 산지화 진행실태 및 예방관리 방안)

  • Lee, Soo-Dong;Kim, Sun-Hee;Kim, Ji-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.498-511
    • /
    • 2012
  • Mountainous wetland have many species such as II grade endangered species of wild flora and fauna(Drosera rotundifolia) and environmental indicator species(Utricularia racemosa, Habenaria linearifolia, Parnassia palustris, Molinia japonica, etc.). Accordingly, the mountainous wetlands is very important. However, most mountainous wetlands will disappear by natural or artificial aridness processes. Thus, it needs to manage mountainous wetland for protecting from aridness. This study has found out the wetland status of the environmental ecology and aridness processes moreover, it has suggested ways of improving wetland conservation plan and wetland aridness management plan. According to the results of topography structure survey, Hwaeom wetland's altitude is ranged within 750~810m(87.4%), and slope is less than $10^{\circ}$. There was ideally suited mountainous wetland. However, the water supply(1.6 meters depth and 0.8 meters wide) was built on under the wetland. For that reason, there was concerned about the aridness processes by sweeping away peat layer and dropping the water level. The distribution area of hygrophyte was narrowed to 6.7% whereas, woody plants and xerophytic plants was achieved a dominant position. If it leaves the situation as it is, the mountainous wetland will be developed next succession as forest ecosystem. Therefore, in order to sustain the mountainous wetland from aridness, it is set to the base direction of conservation and management as main schemes. Moreover, we have suggested that setting the vegetation conservation and management area which considering a ecological vegetation characteristics, managing the ecotone vegetation, setting the buffer zone for protection of ecological core areas, protecting the mountainous wetland indicator species and designating the management vegetation. In conclusion, in order to sustain and maintain a soundly wetland ecosystem, it needs to several management of wetlands damage factors. 1) suppression of the excessive groundwater to basin, 2) stabilization of wetland via hydrologic storage, 3) suppression of changing and transforming wetland into forest by succession via management of xerophytic plants.

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

A study on design process for public space by users behavioral characteristics (이용자 행태 특성에 의한 공용공간의 디자인 프로세스 연구)

  • 김개천;김범중
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • A systemic approach to behavior on the basis of human psychology is needed for behavior-centered space design. Also, the recognition that human and environment, in all, have complementarity is needed- human and space shall be understood as a general phenomenon, supposing interaction. Design of behavior-oriented space means configuration and coordination of physical subjects as well as understanding, analysis and reflection of psychological and behavioral phenomena. It is analysis of a private individual as well as understanding of interaction between human groups, as well. In respect of space recognition, analysis not on material movement but on energy circulation and variable is important. It means that the understanding of user's behavior and psychology does not orient reasonable purpose just for convenience. That is, such understanding intends to understand behavioral patterns and psychological phenomena between space and human beyond the decomposition of structure of human and space into physical elements and the design based on standardized data. Thereby, more human-oriented space design might be implemented by the understanding of behavioral essence. Also, a user-centered design process from another viewpoint might be created, and the general amenity among man, space and environment - better environmental quality - might be produced. For this, the consciousness of human activity that is, activity system shall be ahead of it, and the approaches for design shall be implemented into a process not in predictive ideas but in semi-scientific system. On the basis of the above view, this study was attempted to investigate the orientation of design to recognize space as another life, and explore a process where it is drawn into a design language on the basis of human behavior. If the essence of space behavior and the activity system are analyzed through user observation and it is reflected upon a space design program and then developed into a formative language, a new design process on human and environment might be produced. In conclusion, the reflection of user's behavior and psychology into design, contrary to existing public space design based on physical data, can orient quality improvement of human life and ultimately be helpful to the proposition, 'humanization of space'.

  • PDF

Analysis of Productivity in Rice Plant -IV. Sink-filling rate and sink-source relation (벼의 생산력 분석(分析) -IV. 수기(受器)의 충전속도(充塡速度)와 수기(受器)-급기(給器) 관계(關係))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 1973
  • Sink (grain)-filling rates of IR667 line (Suwon 213 and 214) and local leading varieties (Jinheung and Paldal) were investigated in relation to sink-source ratio, sink-source distance, forms of photosynthates, and weather factors. The results are as follows. 1. IR667 line have higher maximum filling rate (g. grain/day. ear) and shorter duration to reach maximum filling rate than local varieties. The curve pattern of sink-filling rate was high and steep type in IR667 line and low and broad type in local varieties. 2. Weather factors seem to give little effect on the curve pattern of sink-filling rate. 3. The functional sink-source distance (actual sink-source distance multiplied by the contribution rate of leaf for grain production) was shorter in upper leaves (flag and 2nd leaf) for IR667 line, the upper leaf-dependent type in grain production, and was longer in lower leaves (3rd and 4th) for local varieties, the lower leaf-dependent type. Specially short first internode from top may contribute to the upper leaf depencency of IR667 line. 4. According to free sugar-starch ratio (sugar/starch) in the culm and leaf sheath IR667 line could be classified as the high sugar type and the local varieties as the high starch type. The ratio of transportable form (sugar) to non transportable photosynthate (starch) seems to relate with sink-filling rate. And high sugar type is expected to have higher efficiency for grain production in view of energy balance. 5. A hypothesis that the higher in the uniformity within the series of productive structure the more efficient in grain production is proposed and discussed in relation to productivity. 6. According to the pattern of percent nutrient retention of each leaf blade IR667 showed the central retention type and Jinheung showed the apical retention type and each retention type appears to be a cause of each canopy conservation pattern. 7. From the content and percent distribution of nutrient in various organ IR667 could be classified as the leaf sheath dominant type and Jinheung as the leaf blade dominant type. 8. The fact that the greater the percent translocation of nutrient into grain the greater the percent nutrient retention in leaf blade was held between nitrogen and phosphorus within a variety and between varieties within a nutrient (N, P or K).

  • PDF