• Title/Summary/Keyword: Energy storage material

Search Result 516, Processing Time 0.033 seconds

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Analysis of Poly(3-Hydroxybutyrate) Granule-Associated Proteome in Recombinant Escherichia coli

  • Han Mee-Jung;Park Si-Jae;Lee Jeong-Wook;Min Byoung-Hoon;Lee Sang-Yup;Kim Soo-Jin;Yoo Jong-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.901-910
    • /
    • 2006
  • Poly(3-hydroxybutyrate) [P(3HB)] is a microbial polyester intracellularly accumulated as distinct granules in numerous microorganisms as an energy and carbon storage material. Recombinant Escherichia coli harboring the heterologous P(3HB) biosynthesis genes accumulates large amounts of P(3HB) granules, yet the granule-associated proteins have not been identified. Therefore, this study reports on an analysis of the P(3HB) granule-associated proteome in recombinant E. coli. Fiye proteins out of 7 spots identified were found to be involved in functions of translation, heat-stress responses, and P(3HB) biosynthesis. Two of the major granule-associated proteins, IbpA/B, which are already known to bind to recombinant proteins forming inclusion bodies in E. coli, were further analyzed. Immunoblotting and immunoelectron microscopic studies with IbpA/B antibodies clearly demonstrated the binding and localization of IbpA/B to P(3HB) granules. IbpA/B seemed to play an important role in recombinant E. coli producing P(3HB) by stabilizing the interface between the hydrophobic P(3HB) granules and the hydrophilic cytoplasm. Thus, IbpA/B were found to act like phasins in recombinant E. coli, as they are the major proteins bound to the P(3HB) granules, affect the morphology of the granules, and reduce the amount of cytosolic proteins bound to the P(3HB) granules.

A Study on the Effects of Semi-Gel Electrolyte in Electricity Storage Battery (Semi-Gel 전해액이 전력저장용 배터리에 미치는 영향에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • The following results are from the test of semi-gel electrolyte to store energy efficiently and use advanced VRLA batteries by photovoltaic and wind power generation. Semi-Gel electrolyte with Silica 5% became Gel after 1 and half hour. It shows it is the most suitable time that the electrolyte can be absorbed into the separator and active material of plate to be gel. The test also says that semi-gel electrolyte shows the much better performance for low-rate discharge and the liquid electrolyte is good for high-rate discharge because the reaction rate of gel electrolyte is slower than liquid one for high-rate discharge performance. The test with DOD10% and DOD100% says that 5% silica electrolyte shows much better performance for life efficiency than liquid one. Because semi-gel electrolyte increase the efficiency of gas recombination at the chemical reaction of VRLA battery and it makes minimizing the reduction of electrolyte. Using the 5% silica electrolyte in order to improve the stroage efficiency and life performance for photovoltic and wind power generation, it causes improving by 4.8% for DOD100% and 20% for DOD10%.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

The Study on the Separation Characteristics of ion with ion Exchange Membrane - I.The Characteristics of ion Exchange Membrane with the Separator of All-Vanadium Redox Flow Battery - (이온교환막을 이용한 이온의 분리특성에 관한 연구 - I. 전바나듐계 레독스-흐름 전지의 격막용 이온 교환막의 특성 -)

  • Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.393-402
    • /
    • 1993
  • Redox flow secondary battery have been studied actively as one of the most promising electrochemical energy storage devices for a wide range of applications, such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants. In all-vanadium redox flow battery using solution of vanadium-sulfuric acid as a active material, the difficulty in developing an efficient ion selective membrane can still be identified. The asymmetric cation exchange membrane(M-30) as a separator of all-vanadium redox flow battery which were obtained by the reaction of chlorosulfonation for 30 minutes under the irradiation of UV, showed its superiority in the transport number of 0.94 and electrical resistivity of $0.5{\Omega}{\cdot}cm^2$. The base membrane were prepared by lamination a low density polyethlene film of $10{\mu}m$ thickness on polyolefin membrane(HIPORE 120). The electrical resistivity of M-30 membrane in real solution of vanadium-sulfuric acid was $3.79{\Omega}{\cdot}cm^2$ and it was similar to that of Nafion 117 membrane. Also the cell resistivity was $6.6{\Omega}{\cdot}cm^2$and lower than that of Nafion 117. In considertion of electrochemical properties and costs of membranes, M-30 membrane was better than that of Nafion 117 and CMV of Asahi glass Co. as a separator of all-vanadium redox flow battery.

  • PDF

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.

Investigation of Spherical LiMn2O4 Cathode Materials by Spray-drying with Different Electrochemical Behaviors at High Rate (분무건조법으로 제조한 구형 스피넬계 LiMn2O4 양극소재의 합성 조건에 따른 고출력 거동에 대한 연구)

  • Song, Jun Ho;Cho, Woosuk;Kim, Young Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.50-56
    • /
    • 2016
  • Spherical lithium manganese oxide spinel, $Li_{1.10}Mn_{1.86}Al_{0.02}Mg_{0.02}O_4$ was prepared by wet-milling, spray-drying, and sintering process. In the spray-drying process, solid content in slurry was varied from 20 to 30 wt%. In the sintering process, the precursors have been sintered under air or $O_2$ atmosphere. While the as-prepared samples exhibit excellent electrochemical properties at room temperature, the discharge voltage profiles at 5.0C are very different one from another. The origin for the difference especially at initial state of discharge is oxygen defect. The sample prepared in air has larger capacity related to the plateau at 3.3 V (vs. $Li/Li^+$) which is caused by the oxygen defects than the one prepared in $O_2$. The difference of discharge voltage profiles especially at the final state of discharge comes from different diffusion rate of $Li^+$ ions. The sample prepared from 30 wt% solid content of slurry shows twice higher diffusion rate than the samples prepared from 20 wt% solid content, which is attributed to better compactness between primary particles for the sample prepared from 30wt % solid content than the one prepared by 20 wt%.

Study on the Promotion Effect of Ionic Liquid on CH4 Hydrate Formation (이온성 액체를 이용한 메탄 하이드레이트 생성 촉진효과 연구)

  • Shin, Ju-Young;Kim, Kisub;Kang, Seong-Pil;Mun, Sungyong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.500-505
    • /
    • 2013
  • In this study, we investigated the kinetics of gas hydrate formation in the presence of ionic liquid (IL). Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl) was chosen as a material for the promotion effect test. Phase equilibrium curve for $CH_4$ hydrate with aqueous IL solution was obtained and its induction time and consumed amount of $CH_4$ gas were also measured. Aqueous solutions containing 20~20,000 ppm of HEMM-Cl was prepared and studied at 70 bar and 274.15 K. To compare the measured results to those of the conventional promoter, sodium dodecyl sulfate was also tested at the same condition. Result showed that the hydrate equilibrium curve was shifted toward higher pressure and lower temperature region. In addition, the induction time on $CH_4$ hydrate formation in the presence of IL was not shown. The amount of consumed $CH_4$ was increased with the whole range of tested concentration of IL and the highest consumption of $CH_4$ happened at 1,000 ppm of HEMM-Cl. HEMM-Cl induced and enhanced the $CH_4$ hydrate formation with a small amount of addition. Obtained result is expected to be applied for the development of technologies such as gas storage and transport using gas hydrates.

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.