Browse > Article

Analysis of Poly(3-Hydroxybutyrate) Granule-Associated Proteome in Recombinant Escherichia coli  

Han Mee-Jung (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Park Si-Jae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Lee Jeong-Wook (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Min Byoung-Hoon (Cell Biology Laboratory, Department of Biology, Hallym University)
Lee Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Kim Soo-Jin (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
Yoo Jong-Shin (Korea Basic Science Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 901-910 More about this Journal
Abstract
Poly(3-hydroxybutyrate) [P(3HB)] is a microbial polyester intracellularly accumulated as distinct granules in numerous microorganisms as an energy and carbon storage material. Recombinant Escherichia coli harboring the heterologous P(3HB) biosynthesis genes accumulates large amounts of P(3HB) granules, yet the granule-associated proteins have not been identified. Therefore, this study reports on an analysis of the P(3HB) granule-associated proteome in recombinant E. coli. Fiye proteins out of 7 spots identified were found to be involved in functions of translation, heat-stress responses, and P(3HB) biosynthesis. Two of the major granule-associated proteins, IbpA/B, which are already known to bind to recombinant proteins forming inclusion bodies in E. coli, were further analyzed. Immunoblotting and immunoelectron microscopic studies with IbpA/B antibodies clearly demonstrated the binding and localization of IbpA/B to P(3HB) granules. IbpA/B seemed to play an important role in recombinant E. coli producing P(3HB) by stabilizing the interface between the hydrophobic P(3HB) granules and the hydrophilic cytoplasm. Thus, IbpA/B were found to act like phasins in recombinant E. coli, as they are the major proteins bound to the P(3HB) granules, affect the morphology of the granules, and reduce the amount of cytosolic proteins bound to the P(3HB) granules.
Keywords
Escherichia coli; IbpA/B; P(3HB) granule-associated proteome; small heat-shock proteins;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Allen, S. P., J. O. Polazzi, J. K. Gierse, and A. M. Easton. 1992. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174: 6938-6947   DOI
2 Bova, M. P., H. S. McHaourab, Y. Han, and B. K. Fung. 2000. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275: 1035-1042   DOI   ScienceOn
3 Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-${\beta}$-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37   DOI
4 Bruey, J. M., C. Ducasse, P. Bonniaud, L. Ravagnan, S. A. Susin, C. Diaz-Latoud, S. Gurbuxani, A. P. Arrigo, G. Kroemer, E. Solary, and C. Garrido. 2000. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2: 645-652   DOI   ScienceOn
5 Choi, J., S. Y. Lee, and K. B. Han. 1998. Cloning of the Alcaligenes latus polyhydroxyalkanoates biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 64: 4897-4903
6 Choi, J., S. Y. Lee, K. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang. 2002. Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 7: 371-374   DOI   ScienceOn
7 Han, M.-J., K. J. Jeong, J.-S. Yoo, and S. Y. Lee. 2003. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69: 5772-5781   DOI
8 Han, M.-J., S. S. Yoon, and S. Y. Lee. 2001. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J. Bacteriol. 183: 301-308   DOI   ScienceOn
9 Kim, K. K., R. Kim, and S. H. Kim. 1998. Crystal structure of a small heat-shock protein. Nature 394: 595-599   DOI   ScienceOn
10 Kitagawa, M., M. Miyakawa, Y. Matsumura, and T. Tsuchido. 2002. Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur. J. Biochem. 269: 2907-2917   DOI   ScienceOn
11 Kucharczyk, K., E. Laskowska, and A. Taylor. 1991. Response of Escherichia coli cell membranes to induction of lambda cl857 prophage by heat shock. Mol. Microbiol. 5: 2935-2945   DOI   ScienceOn
12 Laskowska, E., A. Wawrzynow, and A. Taylor. 1996. IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78: 117-122   DOI   ScienceOn
13 Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14   DOI
14 Leroux, M. R., R. Melki, B. Gordon, G. Batelier, and E. P. Candido. 1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272: 24646-24656   DOI   ScienceOn
15 Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2002. Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules 3: 787-792   DOI
16 McCool, G. J. and M. C. Cannon. 1999. Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J. Bacteriol. 181: 585-592
17 Sugiyama, Y., A. Suzuki, M. Kishikawa, R. Akutsu, T. Hirose, M. M. Waye, S. K. Tsui, S. Yoshida, and S. Ohno. 2000. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem. 275: 1095-1104   DOI   ScienceOn
18 Prieto, M. A., B. Buhler, K. Jung, B. Witholt, and B. Kessler. 1999. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181: 858-868
19 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. U.S.A
20 Steinbuchel, A. and B. Fuchtenbusch. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427   DOI   ScienceOn
21 Switzer, R. C., C. R. Merril, and S. Shifrin. 1979. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 98: 231-237   DOI   ScienceOn
22 Wieczorek, R., A. Pries, A. Steinbüchel, and F. Mayer. 1995. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J. Bacteriol. 177: 2425-2435   DOI
23 Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
24 Potter, M., H. Muller, F. Reinecke, R. Wieczorek, F. Fricke, B. Bowien, B. Friedrich, and A Steinbuchel. 2004. The complex structure of polyhydroxybutyrate (PHB) granules: Four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150: 2301-2311   DOI   ScienceOn
25 Taylor, S. W., E. Fahy, and S. S. Ghosh. 2003. Global organellar proteomics. Trends Biotechnol. 21: 82-88   DOI   ScienceOn
26 Steinbuchel, A., K. Aerts, W. Babel, C. Follner, M. Liebergesell, M. K. Madkour, F. Mayer, U. Pieper-Furst, A. Pries, and H. E. Valentin. 1995. Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can. J. Microbiol. 41: 94-105   DOI
27 Veinger, L., S. Diamant, J. Buchner, and P. Goloubinoff. 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11032-11037   DOI   ScienceOn
28 Shearstone, J. R. and F. Baneyx. 1999. Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274: 9937-9945   DOI   ScienceOn
29 Steinbuchel, A., E. Hustede, M. Liebergesell, U. Pieper, A. Timm, and H. Valentin. 1992. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol. Rev. 9: 217-230
30 Park, S. J., J.-I. Choi, and S. Y. Lee. 2005. Short-chainlength polyhydroxyalkanoates: Synthesis in metabolically engineered Escherichia coli and medical applications. J. Microbiol. Biotechnol. 15: 206-215   과학기술학회마을
31 Griebel, R., Z. Smith, and J. M. Merrick. 1968. Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7: 3676-3681   DOI   ScienceOn
32 Hart, R. A., U. Rinas, and J. E. Bailey. 1990. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J. Biol. Chem. 265: 12728-12733
33 Fukui, T., T. Kichise, T. Iwata, and Y. Doi. 2001. Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria Biomacromolecules 2: 148-153   DOI   ScienceOn
34 Pieper-Furst, U., M. H. Madkour, F. Mayer, and A. Steinbuchel. 1994. Purification and characterization of a 14- kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. J. Bacteriol. 176: 4328-4337   DOI
35 Kim, T.-K., M. T. Vo, H.-D. Shin, and Y.-H. Lee. 2005. Molecular structure of the PHA synthesis gene cluster from new mcl-PHA producer Pseudomonas putida KCTC1639. J. Microbiol. Biotechnol. 15: 1120-1124   과학기술학회마을
36 Studer, S. and F. Narberhaus. 2000. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275: 37212-37218   DOI   ScienceOn
37 Basha, E., G. J. Lee, L. A. Breci, A. C. Hausrath, N. R. Buan, K. C. Giese, and E. Vierling. 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279: 7566-7575   DOI   ScienceOn
38 Huber, L. A., K. Pfaller, and I. Vietor. 2003. Organelle proteomics: Implications for subcellular fractionation in proteomics. Circ. Res. 92: 962-968   DOI   ScienceOn
39 Pieper-Furst, U., M. H. Madkour, F. Mayer, and A. Steinbuchel. 1995. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J. Bacteriol. 177: 2513-2523   DOI
40 Maehara, A., S. Ueda, H. Nakano, and T. Yamane. 1999. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J. Bacteriol. 181: 2914-2921
41 Liebergesell, M., K. Sonomoto, M. Madkour, F. Mayer, and A. Steinbüchel. 1994. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur. J. Biochem. 226: 71-80   DOI
42 Nam, I.-Y., H. Myung, and K. Joh. 2004. Molecular cloning, purification, and characterization of an extracellular nuclease from Aeromonas hydrophila ATCC14715. J. Microbiol. Biotechnol. 14: 178-181
43 Potter, M., M. H. Madkour, F. Mayer, and A. Steinbuchel. 2002. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148: 2413-2426   DOI
44 Wang, F. and S. Y. Lee. 1997. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63: 4756-4769
45 Lee, G. J., A. M. Roseman, H. R. Saibil, and E. Vierling. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a foldingcompetent state. EMBO J. 16: 659-671   DOI   ScienceOn
46 Jurgen, B., H. Y. Lin, S. Riemschneider, C. Scharf, P. Neubauer, R. Schmid, M. Hecker, and T. Schweder. 2000. Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucoselimited fed-batch fermentations. Biotechnol. Bioeng. 70: 217-224   DOI   ScienceOn
47 Schembri, M. A., A. A. Woods, R. C. Bayly, and J. K. Davies. 1995. Identification of a 13-kDa protein associated with the polyhydroxyalkanoic acid granules from Acinetobacter spp. FEMS Microbiol. Lett. 133: 277-283   DOI
48 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
49 Inagawa, Y., Y. Inoue, M. Shiraki, and T. Saito. 2002. Identification and characterization of poly-3-hydroxybutyrate granule-associated protein, PGA12 and PGA16 in Zoogloea ramigera I-16-M. Int. J. Biol. Macromol. 30: 55-61   DOI   ScienceOn
50 Ehrnsperger, M., S. Graber, M. Gaestel, and J. Buchner. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16: 221-229   DOI   ScienceOn
51 Jeong, K. J. and S. Y. Lee. 2002. Excretory production of human ${\beta}$-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68: 4979-4985   DOI
52 Han, M.-J., S. J. Park, T. J. Park, and S. Y. Lee. 2004. Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 88: 426-436   DOI   ScienceOn
53 Mergulhao, F. J. M., G. A. Monteiro, J. M. S. Cabral, and M. A. Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14   DOI   ScienceOn
54 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn