• 제목/요약/키워드: Energy stability

검색결과 3,238건 처리시간 0.036초

발전력 재배분을 이용하여 과도안정도를 향상하기 위한 Newton's Approach 응용 (Application of Newton's Approach for Transient Stability Improvement by Using Generation Rescheduling)

  • 김규호
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.68-75
    • /
    • 2013
  • This paper presents a scheme to improve transient stability using Newton's Approach for generation rescheduling. For a given contingency, the energy margin and sensitivities are computed. The bigger energy margin sensitivity of generator is, the more the generation of the generator effects to the transient stability. According to energy margin sensitivity, the control variables of generation rescheduling are selected. The fuel cost function is used as objective function to reallocate power generation. The results are compared to the results of time simulation to show its the effectiveness.

에너지법을 이용한 보강된 박판의 안정성해석 (Stability Analysis of Stiffened Thin Plates Using Energy Method)

  • 김문영;민병철
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.55-65
    • /
    • 1996
  • For stability analysis of stifened rectangular thin plates with various boundary conditions, Ritz method is presented. An energy method is especially useful in those cases where a rigorous solution of the diferential eqution is unknown or where we have a plate reinforced by stiffeners and it is required to find only an approximate value of the critical load. The strain energy due to the plate bending and the work done by the in-plane forces are taken into account in order to apply the principle of the minimum potential energy. The buckling mode shapes of flexural beams with various boundary conditions are derived, and shape functions consistent with the given boundary conditions in the two orthogonal directions are chosen from those displacement functions of beams. The matrix equations for stability of stiffened rectangular thin plates are determined from the stationary condition of the total potential energy. Numerical example for stability behaviors of horizontally and vertically stiffened plates subjected to uniform compression, bending and shear loadings are presented and the obtained results are compared with other researchers' results.

  • PDF

오행기질(五行氣質)의 불균형적(不均衡的) 구조(構造)에 근거(根據)한 체질론(體質論)의 수리학적(數理學的) 분석(分析) (Mathematical Analysis of Constitutional Theory Based on Imbalanced Structure of Five Energy Elements)

  • 허경구;박광석
    • 대한한의학회지
    • /
    • 제33권3호
    • /
    • pp.105-119
    • /
    • 2012
  • Background: In contrast to the increased interest in constitutional medicine evidenced by clinical experiences, there has been no theoretical or mathematical analysis on the stability or number of constitutional types. Objectives: The purpose of the study was to evaluate the stability of possible constitutional types and to find stable constitutional types based on imbalanced structure of five energy elements using mathematical analysis. Methods: For the 120 constitutional types which are possible by the imbalanced combination of five energy elements, vitality, stability and continuity were evaluated mathematically based on mutual activation and suppression between the five energy elements. Results: 10 constitutional types were derived. They had the highest vitality and stability, and they had permanent continuity, never changing their order of imbalanced structure. Conclusions: 10 constitutional types are logical and most reasonable when we classify the body types based on imbalanced structure of five energy elements.

Enhanced Stability of Perovskite Solar Cells using Organosilane-treated Double Polymer Passivation Layers

  • Park, Dae Young;Byun, Hye Ryung;Kim, Hyojung;Kim, Bora;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1787-1793
    • /
    • 2018
  • The power conversion efficiency of perovskite solar cells has reached 23.3%. Although significant developments have been made through intensive studies, the stability issue is still challenging. Passivation of perovskite solar cells with a transparent polymer provides better stability; however, there are a few disadvantages of organic polymer such as low thermal stability, weak adhesion and the lack of water retention ability. In this work, we prepared a dual Parylene-F/C layer with 3-methacryloxypropyltrimethoxysilane, A-174, to combine the advantages of organic and inorganic materials. As a result, A-174 treated dual Parylene-F/C layer demonstrated improved passivation effects compared to a single Parylene layer due to the strong binding of Parylene and the water retention ability by $SiO_2$ formed from A-174. This synergetic effects can be expanded to the combination of other organic materials and organosilane compounds.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • 제9권4호
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

선로저항을 반영하는 에너지함수 유도를 위한 등가시스템 기법의 개발 (The Development of Equivalent System Technique for Deriving an Energy Function Reflecting Transfer Conductances)

  • 문영현;조병훈;노태훈;최병곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1175-1182
    • /
    • 1999
  • This paper shows that a well-defined energy function can be developed to reflect the transfer conductances for multi-machine power systems under an assumption that all transmission lines have uniform R/X rations. The energy function is derived by introducing a pure reactive equivalent system for the given system. In this study, a static energy function reflecting transfer conductances is also derived as well as the transient energy function. The proposed static energy function is applied to voltage stability analysis and tested for various sample systems. The test results show that the accuracy of voltage stability analysis can be considerable improved by reflecting transfer conductances into the energy function.

  • PDF

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Modelling and Stability Analysis of AC-DC Power Systems Feeding a Speed Controlled DC Motor

  • Pakdeeto, Jakkrit;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1566-1577
    • /
    • 2018
  • This paper presents a stability analysis of AC-DC power system feeding a speed controlled DC motor in which this load behaves as a constant power load (CPL). A CPL can significantly degrade power system stability margin. Hence, the stability analysis is very important. The DQ and generalized state-space averaging methods are used to derive the mathematical model suitable for stability issues. The paper analyzes the stability of power systems for both speed control natural frequency and DC-link parameter variations and takes into account controlled speed motor dynamics. However, accurate DC-link filter and DC motor parameters are very important for the stability study of practical systems. According to the measurement errors and a large variation in a DC-link capacitor value, the system identification is needed to provide the accurate parameters. Therefore, the paper also presents the identification of system parameters using the adaptive Tabu search technique. The stability margins can be then predicted via the eigenvalue theorem with the resulting dynamic model. The intensive time-domain simulations and experimental results are used to support the theoretical results.

상장 에너지 공기업 경영 안정성 분석: 중위투표자이론의 관점에서 (An Analysis of Operational Stability of the KOSPI-listed Energy Public Enterprise from the Perspective of Median Voter Theory)

  • 김영신
    • 자원ㆍ환경경제연구
    • /
    • 제32권2호
    • /
    • pp.77-105
    • /
    • 2023
  • 본 논문은 상장 에너지 공기업의 경영 안정성에 대해 중위투표자이론의 관점에서 분석한다. 2011~2022년 기간 동안 KOSPI에 상장된 한국가스공사, 한국전력공사, 한국지역난방공사, 한국전력기술(주), 한전KPS(주)의 수익성과 안정성에 대해 분석하고, 일반 국민을 대리할 수 있는 중위투표자의 선호와 관련이 있는지 실증분석을 수행한다. 상장 에너지 공기업의 총자산 수익률, 매출액 영업이익률, 자기자본 순이익률로 대리되는 수익성과 자본 대비 부채비율로 대리되는 안정성을 분석한 결과, 근년 들어 상장 에너지 공기업의 경영 안정성은 악화되는 추세에 있는 것으로 나타났다. 또한 공기업의 경영 안정성이 중위투표자의 선호와 관련이 있음이 실증분석 결과로 나타났다. 중위투표자의 소득이 평균소득보다 낮을수록 공기업의 수익성은 하락하고 부채비율은 증가하는 결과를 보여준다. 본 논문은 중위투표자관점에서 공공·에너지 요금의 지나친 부담은 정부와 정치권의 요금 인상 억제의 유인을 강화시켜 공기업의 수익성은 하락하고 부채는 증가하는 결과를 초래할 수 있음을 시사한다.

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.