• Title/Summary/Keyword: Energy spectrum

Search Result 1,622, Processing Time 0.026 seconds

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

The applicability study and validation of TULIP code for full energy range spectrum

  • Wenjie Chen;Xianan Du;Rong Wang;Youqi Zheng;Yongping Wang;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4518-4526
    • /
    • 2023
  • NECP-SARAX is a neutronics analysis code system for advanced reactor developed by Nuclear Engineering Computational Physics Laboratory of Xi'an Jiaotong University. In past few years, improvements have been implemented in TULIP code which is the cross-section generation module of NECP-SARAX, including the treatment of resonance interface, considering the self-shielding effect in non-resonance energy range, hyperfine group method and nuclear library with thermal scattering law. Previous studies show that NECP-SARAX has high performance in both fast and thermal spectrum system analysis. The accuracy of TULIP code in fast and thermal spectrum system analysis is demonstrated preliminarily. However, a systematic verification and validation is still necessary. In order to validate the applicability of TULIP code for full energy range, 147 fast spectrum critical experiment benchmarks and 170 thermal spectrum critical experiment benchmarks were selected from ICSBEP and used for analysis. The keff bias between TULIP code and reference value is less than 300 pcm for all fast spectrum benchmarks. And that bias keeps within 200 pcm for thermal spectrum benchmarks with neutron-moderating materials such as polyethylene, beryllium oxide, etc. The numerical results indicate that TULIP code has good performance for the analysis of fast and thermal spectrum system.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

A Cooperative Spectrum Sensing Scheme with an Adaptive Energy Threshold in Cognitive Radios

  • Van, Hiep-Vu;Koo, In-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.391-395
    • /
    • 2011
  • Cognitive radio (CR) technique is a useful tool for improving spectrum utilization by detecting and using the vacant frequency bands while avoiding interference to the primary user. The sensing performance in a CR network can be improved by allowing some CR users to perform cooperative spectrum sensing. In this paper, we propose a new sensing algorithm that utilizes an adaptive energy threshold for cooperative spectrum sensing in which a changeable energy threshold is adopted by the CR users for improving local sensing performance. Through the proposed scheme, the reliability of global decision can be enhanced mainly due to the improvement in local sensing performance.

A Novel Cluster-Based Cooperative Spectrum Sensing with Double Adaptive Energy Thresholds and Multi-Bit Local Decision in Cognitive Radio

  • Van, Hiep-Vu;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.461-474
    • /
    • 2009
  • The cognitive radio (CR) technique is a useful tool for improving spectrum utilization by detecting and using the vacant spectrum bands in which cooperative spectrum sensing is a key element, while avoiding interfering with the primary user. In this paper, we propose a novel cluster-based cooperative spectrum sensing scheme in cognitive radio with two solutions for the purpose of improving in sensing performance. First, for the cluster header, we use the double adaptive energy thresholds and a multi-bit quantization with different quantization interval for improving the cluster performance. Second, in the common receiver, the weighed HALF-voting rule will be applied to achieve a better combination of all cluster decisions into a global decision.

Spectrum Sensing System in Software-defined Radio to Determine Spectrum Availability

  • Llames, Gerome Jan M.;Banacia, Alberto S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.100-106
    • /
    • 2016
  • Spectrum sensing is an integral part of cognitive radio, which seeks to address the perceived spectrum scarcity that is caused by inefficient utilization of the available spectrum. In this paper, a spectrum sensing system using energy detection for analog TV and FM broadcast transmitters as well as modified Integrated Services Digital Broadcasting Terrestrial (ISDB-T) signals is implemented on a software-defined radio platform using GNU' Not Unix (GNU) radio and the N200 Universal Software Radio Peripheral (USRP). Real-time implementation and experimental tests were conducted in Metro Cebu, a highly urbanized area in the southern part of the Philippines. Extensive tests and measurements were necessary to determine spectrum availability, particularly in the TV band. This is in support of the Philippine government' efforts to provide internet connectivity to rural areas. Experimental results have so far met IEEE 802.22 requirements for energy detection spectrum sensing. The designed system detected signals at -114 dBm within a sensing time of 100 ms. Furthermore, the required $P_d({\geq}90)$ and $P_{fa}({\leq}10)$ of the standard were also achieved with different thresholds for various signal sources representing primary users.

X-Ray Spectrum Modulation for Mammography (X-선 스펙트럼 변조 기술 연구)

  • Kim, Gwang-Hyeon;Kim, Gyeong-Rak;O, Chang-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.600-603
    • /
    • 2003
  • Energy spectrum modulation of X-ray source in digital mammography has been studied. In this study, we calculated various filtered spectra using the scattering data. Primary spectra were generated by Molybdenum (Mo) and Tungsten (W) targets. The materials of added filters are Molybdenum and Rhodium (Rh) for 40 kVp Mo. primary spectrum, the amounts of photons over whole energy ranges are attenuated to 0.43 with 0.03 mm Mo filter and 0.38 with 0.06 mm Mo filter while the photons of energy ranged from 17 keV to 20 keV. The photons of low energy ranged below 17 keV are considerably attenuated. This effect brings out reducing the scattered radiation and dose to the patient, and enhancing subject contrast in the image. The results show that filtered spectra are not seriously affected by X-ray tube loadability. Because the energy range from 17 keV to 20 keV is directly transmitted although low and high energies are mainly filtered.

  • PDF

Neutron yield and energy spectrum of 13C(alpha,n)16O reaction in liquid scintillator of KamLAND: A Nedis-2m simulation

  • Vlaskin, Gennady N.;Bedenko, Sergey V.;Ghal-Eh, Nima;Vega-Carrillo, Hector R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4067-4071
    • /
    • 2021
  • The 13C (α,n)16O reaction cross-section is important data for nuclear physics, astrophysical, and neutrino physics experiments, however, they exhibit uncertainties due to the discrepancies in the experimental data. In this study, using the Nedis-2m program code, the energy spectrum of α-induced neutrons in a thin carbon target was calculated and the corresponding reaction cross-section was refined in the alpha particle energy range of 5-8 MeV. The results were used to calculate the intensity and energy spectrum of background neutrons produced in the liquid scintillator of KamLAND. The results will be useful in a variety of astrophysical and neutrino experiments especially those based on LS or Gd-LS detectors.

Cooperative Spectrum Sensing for Cognitive Radio Systems with Energy Harvesting Capability (에너지 수집 기능이 있는 인지 무선 시스템의 협력 스펙트럼 센싱 기법)

  • Park, Sung-Soo;Lee, Seok-Won;Bang, Keuk-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.8-13
    • /
    • 2012
  • In this paper, we investigate cooperative spectrum sensing scheme for sensor network-aided cognitive radio systems with energy harvesting capability. In the proposed model, each sensor node harvests ambient energy from environment such as solar, wind, mechanical vibration, or thermoelectric effect. We propose adaptive cooperative spectrum sensing scheme in which each sensor node adaptively carries out energy detection depending on the residual energy in its energy storage and then conveys the sensing result to the fusion center. From simulation results, we show that the proposed scheme minimizes the false alarm probability for given target detection probability by adjusting the number of samples for energy detector.

A Sensing Node Selection Scheme for Energy-Efficient Cooperative Spectrum Sensing in Cognitive Radio Sensor Networks (인지 무선 센서 네트워크에서 에너지 효율적인 협력 스펙트럼 센싱을 위한 센싱 노드 선택 기법)

  • Kong, Fanhua;Jin, Zilong;Cho, Jinsung
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • Cognitive radio technology can allow secondary users (SUs) to access unused licensed spectrums in an opportunistic manner without interfering with primary users (PUs). Spectrum sensing is a key technology for cognitive radio (CR). However, few studies have examined energy-efficient spectrum sensing in cognitive radio sensor networks (CRSNs). In this paper, we propose an energy-efficient cooperative spectrum sensing nodes selection scheme for cluster-based cognitive radio sensor networks. In our proposed scheme, false alarm probability and energy consumption are considered to minimize the number of spectrum sensing nodes in a cluster. Simulation results show that by applying the proposed scheme, spectrum sensing efficiency is improved with a decreased number of spectrum sensing nodes. Furthermore, network energy efficiency is guaranteed and network lifetime is substantially prolonged.