• Title/Summary/Keyword: Energy salt

Search Result 720, Processing Time 0.026 seconds

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전에서 태양열에너지 수송을 위한 고온 축열 물질의 열절달 특성)

  • Mao, Aiming;Kim, Ki-Man;Kang, Yong-Heack;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.190-193
    • /
    • 2008
  • The heat transfer characteristics of molten salt storage system for the solar thermal power generation were investigated. Temperature profiles and the heat transfer coefficients during the storage and discharge stage were obtained with the steam as the heat transfer fluid. Two kinds of inorganic salt were employed as the storage materials and coil type of heat exchanger were installed in both tanks to provide the heat transfer surfaces during the storage and discharge stage. The effects of steam flow rates, flow direction of steam in the storage tank and the initial temperature of storage and discharge tank on the heat transfer were tested.

  • PDF

A System Development of Thermal Energy Storage at High Temperatures (고온 축열 시스템의 개발에 관한 연구)

  • Hong, Seong-Ahn;Park, Won-Hoon;Choe, Hyung-Joon
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

MVRS해수담수화 및 제염기술

  • 김상현;김동국;전원표
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.285-302
    • /
    • 2001
  • At the present time the desalination technology of sea water for portable water in islands employs the RO method. The technology which needs complicated pretreatment processes with various chemicals can generate secondary water pollution and the high maintenance costs such as replacements of filters and membranes make islanders nearly impossible to operate. The MVRS technology for desalination of sea water however has several advantages such as constant production of quality portable water and capability of managing broad operating load. The variable-speed turbo-type vapor compressors employed in the system can utilize wind energy which is abundant in most Korean islands. Salt as a by-product can be produced by applying solar energy to the salt-concentrated waste water from the system. This paper discusses the relating topics such as technical and economical viabilities of the new MVRS desalination system for the production of portable water and salt as a by-product using new & renewable sources of energy.

  • PDF

Plasma Surface Treatment of Aluminum Extrusion Die (알루미늄 압출용 금형의 플라즈마 표면처리)

  • Choi, In Kyu;Lee, Su Young;Kim, Sang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.282-286
    • /
    • 2014
  • Wear characteristic of the nitrided SKD61 which is a typical mold material using for the extrusion of Al6061 alloy was investigated. The surface of SKD61 was nitrided by salt bath and plasma processes. The thickness of surface nitride layer was about $8.9{\mu}m{\sim}21.3{\mu}m$. Reciprocating friction wear test conducted using pin on disk type indicated the plasma treatment followed salt bath has a lower friction coefficient and a smaller adhesive wear with Al6061 alloy. That was identified by the $Fe_4N$ which has a better wear resistance than FeN mainly formed by plasma nitriding.

The Mechanism of the Photocyclization of N-(2-Haloarylmethyl)Pyridinium and N-(arylmethyl)-2-Halopyridinium Salts

  • Yong-Tae Park;Chang-Han Joo;Chung-Do Choi;Kum-Soo Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.163-169
    • /
    • 1991
  • The photochemical and photophysical properties of N-(2-haloarylmethyl)pyridinium, N-(arylmethyl)-2-halopyridinium, N-(2-haloarylmethyl)-2-halopyridinium salts and N-(2-halobenzyl)-isoquinolinium salt are studied. The pyridinium salts photocyclize to afford isoindolium salts, while the isoquinolium salts do not. In the photocyclization of N-(2-chlorobenzyl)-2-chloropyridinium salts, pyrido[2,1-a]-4-chloroisoindolium salt is formed by the cleavage of chlorine of pyridinium ring. This indicates that the excited moiety is not the phenyl ring, but the pyridinium ring. The triplet states of the pyridinium salts are believed to be largely involved in the photocyclization, since oxygen retards most of the reaction. Some assistance of a ${\pi}$-complex between the excited chlorine moiety of the salt and phenyl plane of the same molecule is required to explain the reactivity of the salts. N-(Benzyl)-2-chloropyridinium salt is two times more reactive than N-(2-chlorobenzyl)pyridinium salt. N-(Benzyl)-2-chloropyridinium salt can form ${\pi}-complex$ effectively because of the electron-rich phenyl group. The ${\pi}$-complex affords an intermediate, phenyl radical by cleaving the chlorine atom. The photocyclized product, isoindolium salt is obtained by losing the hydrogen atom from the phenyl radical. The reactive pyridinium salts 1a, 2a and 3a have a low fluorescence quantum yield (${\Phi}F$ < 0.01) and a higher triplet energy (ET > 68 kcal/mole) than the unreactive quinolinium salt. The unreactivity of isoquinolinium salt can be understood in relation to its high fluorescence quantum yield and its low triplet energy $(E_T = 61 kcal/mole).$.

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전을 위한 고온 축열 물질의 열전달 특성)

  • Aiming, Mao;KIm, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

Formation of Asperites on the Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말 표면에 돌기형성 거동)

  • Lee, Yoon Joo;Kim, Bo Yeon;Shin, Dong-Geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • Alumina nano-asperites were grown on plate-like alumina particles of which the surface had been covered with a capping agent to control the asperite formation sites on the particles. Utilized alumina source for asperite was nano sized ${\gamma}$-alumina, which was prepared by calcination of $Al(OH)_3$ at $600^{\circ}C$; silica suspension was used as the capping agent. Plate like alumina particles were covered by silica suspension and continuously heat-treated to $900^{\circ}C$ with nano sized ${\gamma}$-alumina, as the source material, under molten-salt atmosphere. Asperite growing site were controlled by the degree of coating of the capping agent; 10-20 nanosize of ${\theta}$-alumina were formed on the particle surface. On the other hand, alumina particles without capping agent were observed to undergo only step-like crystal growth during heat-treatment.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.