

ISSN 1225-8024(Print) ISSN 2288-8403(Online) 한국표면공학회지 J. Kor. Inst. Surf. Eng. Vol. 47, No. 6, 2014. http://dx.doi.org/10.5695/JKISE.2014.47.6.282

알루미늄 압출용 금형의 플라즈마 표면처리

최인규, 이수영, 김상호*

한국기술교육대학교 에너지·신소재·화학공학부

Plasma Surface Treatment of Aluminum Extrusion Die

In Kyu Choi, Su Young Lee, Sang Ho Kim*

School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan-city, Chungnam, Korea

(Received December 8, 2014 ; revised December 19, 2014 ; accepted December 22, 2014)

ABSTRACT

Wear characteristic of the nitrided SKD61 which is a typical mold material using for the extrusion of Al6061 alloy was investigated. The surface of SKD61 was nitrided by salt bath and plasma processes. The thickness of surface nitride layer was about $8.9 \,\mu\text{m} \sim 21.3 \,\mu\text{m}$. Reciprocating friction wear test conducted using pin on disk type indicated the plasma treatment followed salt bath has a lower friction coefficient and a smaller adhesive wear with Al6061 alloy. That was identified by the Fe₄N which has a better wear resistance than FeN mainly formed by plasma nitriding.

Keywords: Aluminum extrusion, wear, SKD61, Al6061, plasma nitriding, salt bath nitriding, Fe₄N, FeN.

1. 서 론

알루미늄(Al) 압출은 오랜 시간 산업화가 이루어 져 왔으나, 최근 자동차 및 항공기의 경량화와 관 련하여 고력 알루미늄 압출의 필요성이 높아짐에 따라 그 중요성이 부각되고 있다¹⁾. 따라서 고력 알 루미늄 압출을 위한 압출 공정기술과 압출금형에 대한 표면처리기술이 더욱 중요하게 되었다. 압출 금형의 표면처리로는 질화처리, 침류질화처리, 산화 처리, PVD 등이 있는데, 일반적으로 백색층이 형 성되는 염욕질화처리가 가장 일반적으로 적용되고 있다²⁾. 그러나 염욕질화 처리한 SKD61 금형의 백 색층은 취약해서 압출 시 쉽게 깨지기 때문에 마모 수명을 제한하는 문제점이 있다. 이 문제를 해결 하 기 위해서는 취약한 FeN 이나 Fe₂₃N 보다는 전연 성이 있는 Fe₄N 화합물 백색층을 갖는 질화층을 형 성시켜야 한다²⁾. 따라서 본 연구에서는 알루미늄 압 출 금형의 수명 향상을 위해 기존의 금형 재료인 SKD61 합금에 염욕질화 처리와 글로우 방전에 의 해 재료 표면에 질소를 침투, 확산시키는 방법인 플 라즈마 질화처리를 융합 적용하여 Fe_xN상의 변화 를 확인하고 경도 및 마모특성 변화를 분석하였다.

2. 실험 방법

2.1 시험편 준비

본 실험에서 상부 시험편(8 mmΦ×19 mmL Pin) 은 고력 알루미늄 압출재료로 널리 사용되는 Al6061 소재를 사용하였으며 화학조성비는 표 1과 같다³⁾.

Table	1.	Chemical	composition	of	AI	6061	1
-------	----	----------	-------------	----	----	------	---

Element (wt %)									
Al	Mg	Si	Cr	Mn	Ti	Cu	Zn	Fe	other
96.36	1.2	0.8	0.04	0.15	0.15	0.2	0.25	0.7	0.15

^{*}Corresponding Author : Sang Ho Kim School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education E-mail : shkim@kut.ac.kr

Fig. 1. Drawing of disc made of SKD61.

Fig. 2. Pin on disk type reciprocating friction wear test.

염욕 질화처리와 플라즈마 질화처리를 조합한 하부 시험편(Disc)에는 SKD61 합금이 사용되었고 화학 조성비는 표 2와 같다³⁾. 하부 시험편은 그림 1과 같은 형태로 제작되었다.

제작된 하부시험편은 표 3의 조건을 이용 아르곤 과 질소 기체 4:1 비율의 분위기 하에서 각각 200 W, 300 W, 400 W에서 플라즈마 질화처리되었다. 플라 즈마 처리 후 10분동안 초음파세척을 통해 표면의 불순물을 제거하고 경도측정 및 마모시험을 진행하 였다.

2.2 실험 방법

마이크로 비커스경도계(Mitwtoyo, HM-200)를 이 용하여 SKD61, 염욕질화처리 된 SKD61, 염욕질화 와 플라즈마 질화처리된 SKD61 하부시편의 경도 측정 하중을 1 kgf로 경도를 각각 측정하여 비교하 였다. 마모시험은 pin on disc 방식의 직선 왕복 마 모시험으로 진행되었다. 그림 2와 같이 pin의 측면 이 고정된 disc 표면에 하중을 가하면서 직선왕복 운동하는 형태로 진행되었다⁴).

실험 조건은 표 4와 같이 대기압의 무 윤활 조건 에서 pin의 왕복 frequency를 1Hz 로 일정하게 하 고, 실험 하중을 15 kgf, 하부시험편의 온도를 120°C 로 유지시키면서 24시간 동안 진행 하였다. 시험 후 각 시험편의 마찰계수를 비교 하였으며 X-ray

Table 2. Chemical	composition	of SKD61
-------------------	-------------	----------

Element (wt %)										
С	Si Mn P		S	Cr	Мо	V	Fe			
0.42	1.20	0.50	0.03	0.03	5.50	1.50	1.20	Val.		

Table 3. Plasma treatment conditions

Ar (sccm)	48
N ₂ (sccm)	12
Time	1 H
Sub.Temp	RT
Power (W)	200, 300, 400
Pressure (torr)	4.8×10^{-3}
Sample	SKD61(with and without salt bath nitriding)

Table 4. Wear test conditions

Parameter					
Load(kgf)	15				
Temperature(°C)	120				
Time(hour)	24				
Frequency(Hz)	1				
Others	Atmospheric pressure, Un-lubrication				

diffraction (XRD, Rigaku RU200B)을 이용, 플라즈 마 질화 처리된 백색층의 상(Phase)을 확인하였고, Field emission scanning electron microscopy (FE-SEM, JEOL, JSM 7000F)를 이용하여 질화층의 깊 이를 관찰하였으며, Energy dispersive x-ray spectroscopy (EDS)를 이용하여 각 하부시편들의 마모 전과 마모후의 표면성분을 분석하였다.

3. 실험 결과 및 고찰

3.1 질화층 분석

그림 3은 플라즈마 질화 처리한 하부시험편의 단 면을 FE-SEM으로 관찰한 것이다. 그림 3(a), (b), (c)는 SKD61 하부시험편을 각각 200W, 300W, 400 W로 플라즈마 질화 처리한 것이며, 그림 3(d) 는 염욕질화(Salt bath nitriding, SBN) 한 후 400W 로 플라즈마 질화처리한 것이다.

그림 3(c)와 (d)의 질화층 두께는 염욕질화처리 유 무와 상관없이 약 20~21 μm 정도로 비슷하다. 또 한 그림 3(a), (b), (c)로 부터 플라즈마의 세기 (Power)가 증가할수록 플라즈마 질화처리층의 두께 가 점점 증가하는 것을 알 수 있다.

그림 4는 SKD61 합금 하부시험편과 이것을 200 W, 300 W, 400 W로 플라즈마 질화처리한 것, 염욕질화처리 한 시편, 염욕질화처리 후 400 W로

Fig. 5. XRD pattern of the discs (a) 200 W, 400 W w/o SBN, (b) 400 W with SBN and only SBN

림 5(b)는 염욕질화처리만한 시험편과 염욕질화처 리 후, 400 W로 플라즈마 질화처리를 한 SKD61 하 부시험편의 XRD 패턴이다. 그림 5(a)의 경우 플라 즈마 질화처리 시 플라즈마의 세기가 강할수록 FeN 상 peak이 뚜렷해지고 크기가 증가함을 보여주고 있다. FeN은 경도가 큰 금속질화물로써 그림 4에 서 200 W에서 300 W, 400 W로 플라즈마 파워가 변 화함에 따라 비커스 경도값이 증가하는 이유를 설 명해 준다⁵⁾. 그림 5(b)에서는 염욕질화 후 플라즈마 질화처리를 하면 2 theta 40~45도 부근에서 Fe₄N 상의 peak의 강도가 커지는 것을 확인 할 수 있었 으며, 기존의 Fe보다 Fe4N상이 많아짐에 따라서 경 도값이 상대적으로 증가한 것으로 판단된다. 또한 그림 5(a)와 (b)에서 400 W와 SBN + 400 W 시험편 을 비교해 보면 플라즈마 질화처리만한 시험편에서 의 FeN peak이 염욕질화 후 플라즈마 질화처리한 시험편에서는 Fe4N상으로 성장한 것을 관찰할 수 있 었다. 이는 플라즈마 처리에 의해 취약한 FeN상이 상대적으로 인성이 큰 Fe4N상으로 변화되었다고 볼 수 있다.

Fig. 3. FE-SEM cross-sectional images of discs (a) 200 W without SBN, (b) 300 W without SBN, (c) 400 W without SBN and (d) 400 W with SBN.

플라즈마 질화처리한 시험편들을 마이크로 비커스 경도 값을 측정, 비교한 것이다. 그림 4에서 X축의 값 중 200 W, 300 W, 400 W는 플라즈마 질화처리 시 플라즈마의 세기(power)를 나타내며, 400 W"는 염욕질화 후 400 W에서 플라즈마 질화처리 한 시 험편을 나타낸다. 200W에서 플라즈마 처리한 시험 편의 경도는 염욕질화 처리한 시험편의 경도보다 작지만 300 W, 400 W로 갈수록 경도가 증가하며, 플라즈마 질화처리를 추가할 경우 염욕질화한 시험 편이 염욕질화 하지 않은 경우보다 35% 정도의 높 은 경도 값을 나타내었다.

그림 5는 서로 다른 조건으로 질화처리된 시험편 의 XRD패턴을 보여준다. 그림 5(a)는 염욕질화처 리를 하지 않고 각각 200 W, 300 W, 400 W로 플라 즈마 질화처리한 SKD61 시험편의 XRD 이다. 그

Fig. 6. Friction coefficient depends on the nitriding method at 120 degree C.

3.2 마모시험 결과

그림 6은 왕복마모 시험 시 질화처리 방법에 따 른 마찰계수 값의 변화를 나타낸 그래프이다. 마찰 계수는 상부 시험편과 하부 시험편에서 발생하는 마찰력과 수직에서 누르는 하중의 비로 나타내어지 며, 각각의 사이에서 상대운동이 시작하는 순간과 정지상태에서 각각 측정하여 평균하였다⁹. 24시간 동안의 마찰계수변화를 보면 시간이 지남에도 불구 하고 거의 일정한 마찰계수를 가지는 것으로 마모 시험이 안정된 조건에서 진행되었음이 확인되었다.

플라즈마 질화 처리 시, 플라즈마의 세기가 증가 하면 증가 할수록 마찰계수가 감소하는 것을 확인 했으며, 염욕질화처리만 한 것보다 염욕질화와 플 라즈마 질화처리를 병합한 하부시험편이 제일 적은 마찰계수 값을 보여줬는데 이는 그림 4에서 확인된 바와 같이 염욕질화 후 플라즈마 질화처리 시 Fe₄N 의 상의 증가로 인해 경도가 증가한 것에 기인한 것으로 보인다.

그림 7은 질화처리 조건 별로 24시간동안 마모 후 마모 시험기에서 측정된 하부시편의 평균 마모 깊이를 나타낸 것이다. 경도가 제일 높고 마찰계수 가 가장 낮은 SBN + 400 W 시험편이 가장 적은 마 모 깊이를 보였다. 또한 염욕질화처리만 한 시험편 의 평균 마모깊이는 약 0.00977 mm이고 염욕질화 후 플라즈마 처리한 시험편의 평균 마모깊이는 약 0.0075 mm로 23%정도의 감소율을 보였다. 이는 금 형 수명에 있어서 질화처리 후 플라즈마처리가 질 화처리 단독보다 효과적이라는 것을 보여준다⁶⁾. 이 것은 그림 5에서 관찰된 바와 같이 플라즈마 처리 에 의해 취약한 FeN상이 상대적으로 인성이 큰 Fe4N상으로 변화된 것에 기인한 것으로 판단된다.

Fig. 7. Wear depth depends on the nitriding method.

그림 8은 염욕질화된 시편과 염욕질화 되지 않은 시험편의 플라즈마 질화처리 후 마모시험 전후에 표면을 EDS 화학성분을 분석한 결과이다. 그림 8 의 좌측은 마모 전 시험편의 표면형상과 성분이고, 우측은 마모 후 표면형상과 성분이다. 그림 8(a), (b)의 경우 염욕질화하지 않은 시험편을 각각 200 W, 400 W로 플라즈마 처리 한 것이고 그림 (c)의 경우 염욕질화처리 후 400 W로 플라즈마 질화처리한 것 이다. 그림 8(a), (b), (c)에서 모두 마모 후 N의 성 분이 남아있는 것을 확인할 수 있고, 이는 Fe_xN의 백색층이 마모되었음에도 불구하고 질화층 내부에 서 마모가 종료되었음을 보여준다. 200 W에서 400 W 로, 400 W에서 SBN + 400 W 시험편으로 갈수록 N 량이 표면에 더 많아지며 Fe4N상이 많아짐에도 불 구, 경도가 높아져 상부시편이 더욱 많이 마모되어 상부시편의 성분인 알루미늄의 양이 많아 지는 것 도 확인 할 수 있으며, 마모 후 시험편의 표면에서 O,의 함량이 큰 폭으로 증가한 것을 볼 수 있었는 데 이는 120°C 온도에서 마찰표면에 산화물이 형 성되기 때문이다. 산화물의 형성은 표면의 피막 탈 착을 원할하게 하여 시험편 표면이 매끄러워 지게 되어 마찰 계수를 낮추게 된는 역할을 하는 것으로 보고되고 있다^{7,8)}. 플라즈마 처리만 한 시험편이 상 대적으로 응착마모 형상을 보이는 것에 비하여 염 욕질화 후 플라즈마 질화한 시험편은 평활하고 연 삭편이 미세한 연삭마모의 형태를 보여주고 있음을 알 수 있다.

4. 결 론

알루미늄 압출 금형의 내마모성 향상을 위한 방 안으로 알루미늄 압출 금형재로 널리 사용되는 SKD61 합금에 플라즈마 질화처리와 염욕질화+플 라즈마질화 처리 후 마모시험을 통해 다음과 같은 결과를 얻었다.

1. 플라즈마 처리 시 플라즈마의 세기를 강하게

(a)	Chemical	formula	mass%	CON CREEK	Chemical	formula	mass%
()	С	10	33.02		с	20.73	39.56
	N	1.53	4.33	Second .	N	1.52	2.04
	0	5.66	14.04	1. Suga	0	14.54	20.84
	S	5.67	7.01	1 Providente	AI	26.22	22.28
Surger and the second	Cr	2.51	1.91	2 Contraction	Cr	2.31	1.02
Senter of The Section	Fe	47.74	33.9		Fe	33.45	13.73
SEI 20KV WD10mm S	•7• W	26.89	5.8	SEI 2044 WD10mm 5577	Zn	1.5	0.53
(b)	Chemical	formula	mass%	Contraction of the	Chemical	formula	mass%
	С	10.87	34.13	242 75 - 22	С	8.49	16.65
and the second second	N	2.39	6.42		N	0.94	1.59
and services	0	6.19	14.59	Carlow Francis	0	24.5	36.09
and the second s	S	5.71	6.71	and the second	Al	38.39	33.52
the second	Cr	2.36	1.71	And the second second	Cr	1.65	0.75
e e e e e e e e e e e e e e e e e e e	Fe	45.87	30.97	A Carton	Fe	23.1	9.74
BEI 20KY WD10mm S	979 W	26.62	5.46	SEI 205V WD10mm BS77	Zn	2.02	0.73
(c)	Chemical	formula	mass%	and the second	Chemical	formula	mass%
	С	6.07	19.37		С	10.16	19.58
799 2 4 84	N	3.8	10.41	83.88	N	1.43	2.36
Sand Stand Starts	0	8.8	21.09	Rest of the	0	20.07	29.02
	S	3.27	3.91	2 - R - R - R - R - R - R - R - R - R -	Al	47.15	40.43
	Cr	2.81	2.07		Cr	1.19	0.53
and the second second	Fe	49.64	34.09		Fe	16.62	6.89
Sel 20ky WD10mm SI	W	16.4	3.42	BEI 205Y WD10mm BB78	Zn	3.37	1.19

Fig. 8. EDS analysis of disc surfaces (a) 200 W without SBN, (b) 400 W without SBN and (c) 400 W with SBN.

하면 백색층의 FeN상이 증가하는 것을 XRD분석을 통해 확인 할 수 있었고, 이에 따라 경도와 마모 성 능의 향상되었다.

 염욕질화 후 플라즈마 처리 시 FeN이 감소하 고 Fe4N이 상대적으로 증가하여 백색층의 인성 향 상 및 마찰계수 감소를 통하여 마모량이 감소하였다.
염욕질화와 플라즈마 질화처리를 조합하여 고 력 알루미늄 합금 압출용 SKD61 금형재료의 내마 모 수명향상이 가능함을 확인하였다.

후 기

본 연구는 교내 산학공동연구과제와 한국기술교 육대학교의 교내연구비 지원으로 수행되었습니다.

References

- Y. Choi, H. T. Yeo, J. H. Park, M. G. Kang, K. H. Oh, S. W. Park, J. Kor. Soc. Precis. Eng 23 (2006) 51
- Y. H. Shin, J. S. Kim, J. Kor. Inst. Met & Mater 29 (1991) 631
- M. S. Kim, S. M. Kang, D. W. Kim, S. H. Kim, J. Kor. Inst. Surf. Eng 42(2009) 273
- M. S. Kim, J. H. Kho, S. H. Kim, J. Kor. Inst. Surf. Eng 13(2010) 279
- 5. I. Lee, Y. Ahn, J. Kor. Inst. Surf. Eng 42 (2009) 119
- S. Y. Lee, S. H. Kim, J. Kor. Inst. Surf. Eng 42 (2009) 235
- T. S. Jang, S. W. Lee, D. W. Moon, G. W. Bahng, J. Kor. Inst. Surf. Eng 30 (1997) 391
- H.-H. Jin, J. W. Kim, K. H. Kim, S.-Y. Yoon : J. Kor. Ceramic Soc 42 (2005) 88