• Title/Summary/Keyword: Energy rose

Search Result 133, Processing Time 0.026 seconds

Antioxidative Effect and Tyrosinase Inhibitory Activity of the Unripened Fruit Extract of Rubus coreanus Miquel (미성숙 복분자 과실의 항산화 효능 및 타이로시네이즈 저해 활성 평가)

  • Han, Saet Byeol;Kwon, Soon Sik;Kong, Bong Ju;Kim, Kyeong Jin;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • In this study, the antioxidative effects and inhibitory activities of unripened fruit extract of Rubus coreanus Miquel (R. coreanus Miquel) on tyrosinase were investigated and the potential applicability as a cosmeceutical ingredients was evaluated. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of unripened fruit extract of R. coreanus Miquel. The DPPH (1,1-diphenyl-2-picrylhydrazyl) scavenging activites ($FSC_{50}$) of 50% ethanol extract (6.56 ${\mu}g/mL$) and ethyl acetate fraction (6.14 ${\mu}g/mL$) of unripened fruit extract of R. coreanus Miquel were higher than (+)-${\alpha}$-tocopherol (8.98 ${\mu}g/mL$), which is known as a typical hydrophobic antioxidant. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of 50% ethanol extract (0.83 ${\mu}g/mL$), ethyl acetate fraction (0.84 ${\mu}g/mL$) and aglycone fraction (1.13 ${\mu}g/mL$) of R. coreanus Miquel on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were higher than L-ascorbic acid (1.5 ${\mu}g/mL$), which is known as s typical hydrophilic antioxidant. The cellular protective effect of extract and fraction of unripened fruit extract of R. coreanus Miquel on the rose bengal sensitized photohemolysis of human erythrocytes was increased in a concentration dependent manner (1 ~ 50 ${\mu}g/mL$). And 50% ethanol extract in 50 ${\mu}g/mL$ showed the most protective effect among extracts (${\tau}_{50}$ = 296.3 min). The inhibitory effects on tyrosinase of ethyl acetate and agylcone fractions were higher than arbutin. These results indicate that unripened fruit extracts of R. coreanus Miquel can be applied to antioxidant scavenging ROS including radical as an alternative whitening agent to replace arbutin.

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

Changes of Micro- and Nanoscopic Morphology of Various Bioresources by Different Milling Systems

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Lee, Min;Lee, Sang-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.737-745
    • /
    • 2017
  • This study was carried out to investigate the changes in micro- and nanoscopic morphology of cellulose nanofibrils (CNFs) from various bioresources by investigating various mechanical milling systems. Mechanical milling in herbaceous bioresources was more effective than in woody bioresources, demonstrating lower energy consumption and finer morphology. The milling time to reach nanoscopic size was longer in woody bioresources than in herbaceous bioresources. Furthermore, at the same level of wet disk milling time, CNFs from herbaceous bioresources showed more slender morphology than those from woody bioresources. Tensile properties of nanopaper prepared from CNFs of herbaceous bioresources were higher than those of woody bioresources. The highest tensile strength was found to be 77.4 MPa in the nanopaper from Evening prim rose.

GUIDED WAVE MODE IDENTIFICATION USING WAVELET TRANSFORM

  • Park, Ik-Keun;Kim, Hyun-Mook;Kim, Young-Kwon;J. L. Rose
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.79-85
    • /
    • 2003
  • One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes in a time-domain waveform for determination of defect location and size. Mode identification can be done by measurement of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But in many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion curves. The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave modes.

  • PDF

Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent (커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성)

  • Seo, Myung-Soon;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

Effects of Weight-Bearing Exercise on Bone Metabolism in College Women (체중부하운동이 여대생의 골대사에 미치는 효과)

  • 김주성;김명희;신재신
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.5
    • /
    • pp.760-770
    • /
    • 2004
  • Purpose: This study was done to identify the effects of weight-bearing exercise(WBE) on bone metabolism. Method: WBE was performed for 12 weeks by healthy college women. Bone-related parameters were measured four times during this period by evaluating the immunoradiometric assay and enzyme immunoassay. Bone mineral densities(BMDs) were measured by dual energy x-ray absorptiometry before and after the WBE program. Data was analyzed using t-test, paired t-test, $x^2$-test, and repeated measures ANOVA. Result: Osteocalcin, a bone formation marker, increased more in the experimental group than in the control group based on the interaction between time and group(F=3.29 p=.024). Little difference between the two groups was found for the other parameters: urinary deoxypyridinoline, insulin-like growth factorI, parathormone, serum calcium, and serum phosphorus without showing any time interaction between the groups. The femoral trochanter BMD rose in the experimental group while that of the control group fell, showing a significant difference for BMD(t=3.06 p=.005). However, there was no significant difference between the two groups for changes in BMD of the forearm, lumbar spine, femoral neck, and femoral ward's triangle. Conclusion: These findings supported the WBE is beneficial for increasing bone formation in college women and long-term application is needed to substantiate the effects of WBE as a intervention in promotion of bone-health.

Alstroemeria plants and its biotechnological applications

  • Lim, Sung-Soo;Lee, Sang-Il;Kang, Se-Chan;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.219-224
    • /
    • 2012
  • Alstroemeria plants are widely cultivated in many countries especially in Western Europe and North America and popularity has increased in recently due to its long-base life, large variety of colors and low energy requirement during cultivation period. So far, more than 60 species have been released on the commercial market in the world. To meet the demand of consumer and develop the elite Alstroemeria cultivars, conventional breeding including cross-hybridization and selection as well as mutation breeding were used. However, as other important ornamental plants such as lily, rose, carnation and orchids accepted the biotechnological methods, this newly-born approach should be applied and developed an optimized the genetic transformation system. Then, this biotechnological approach can be fused with the conventional breeding methods and thus can be contributed to the production of elite Alstroemeria plants containing agriculturally good genetic traits which are useful for the both farmers and consumers in the future. In this paper, we reviewed the botanical and genetical features of Alstroemeria plants and its biotechnological approaches in the last decades.

Texture, Morphology and Photovoltaic Characteristics of Nanoporous F:SnO2 Films

  • Han, Deok-Woo;Heo, Jong-Hyun;Kwak, Dong-Joo;Han, Chi-Hwan;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.93-97
    • /
    • 2009
  • The nanoporous $F:SnO_2$ materials have been prepared through the controlled hydrolysis of fluoro(2-methylbutan-2-oxy)di(pentan-2,4-dionato)tin followed by thermal treatment at $400-550^{\circ}C$. The main IR features include resonances at 660, 620 and 540 cm-1. From the TG-DTG result, three main mass losses of 6.5, 13.3 and 3.8 at 81, 289 and $490^{\circ}C$ are observed between 50 and $650^{\circ}C$ yielding a final residue of 76.0%. The size of Sn $O_2$ nanoparticles rose from 5 nm to 10-12 nm as the temperature of thermal treatment is increased from 400 to $550^{\circ}C$.

Effect of calcination temperature on photocatalytic activities of Er-TiO2 nanotubes

  • Song, Yo-Seung;Lee, Myung-Hyun;Kim, Bae-Yeon;Lee, Deuk Yong
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.2
    • /
    • pp.182-186
    • /
    • 2019
  • 0.7 mol% Er-TiO2 nanotubes were prepared using a sol-gel derived electrospinning and subsequent calcination at intervals of 50 ℃ from 500 ℃ to 650 ℃ to investigate the effect of calcination temperature on the crystal structure and the photocatalytic activity of methylene blue (MB). X-ray diffraction (XRD) results indicated that Er-TiO2 nanotubes calcined at 500 ℃ were composed of anatase only. However, mixed phases of anatase (51%, 55%, 96%) and rutile (49%, 45%, 4%) were observed for the nanotubes calcined at 550 ℃, 600 ℃ and 650 ℃, respectively. As the calcination temperature rose from 500 ℃ to 600 ℃, the Barrette-Emmett-Teller (BET) surface area and degradation kinetic constant increased from 97.77 ㎡/g to 117.62 ㎡/g and from 1.2 × 10-2min-1 to 1.6 × 10-2 min-1, respectively. The Er-TiO2 nanotubes calcined at 600 ℃ exhibited enhanced MB degradation (87%) compared to that of Er-TiO2 nanofibers (37%) due to the synergic combinations of tailored mixed crystals and larger BET area.