• Title/Summary/Keyword: Energy resources

Search Result 4,618, Processing Time 0.042 seconds

Risk Management and Governmental Investment on New & Renewable Energy (Risk Management 관점에서 신재생에너지 투자)

  • Ahn, Eun-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.360-363
    • /
    • 2006
  • Regester & Larkin(2005) suggest the issue and risk lifecycle analysis method in risk management, made up of the potential, emerging, current, crisis, and dormant stages. Investment on New & Renewable Energy is meaningful in effect ive risk management for diminishing or reducing the shock of a energy current, at the potential stage. In this study, we survey the risk of traditional fossil fuel projects and develop the risk analysis model for new & renewable energy projects specially geothermal energy resources and gas-hydrate resources.

  • PDF

Estimation of Energy Recovery Rate of Municipal Waste Incineration Facilities through Measuring Instruments (계측기기 측정을 통한 생활폐기물 소각시설의 에너지 회수효율 산정 연구)

  • Kwon, Young-Hyun;Kang, Jun-Gu;Ko, Young-Jae;Yoo, Ha-Nyoung;Kwon, Jun-Hwa;Park, Ho-Yeun;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.770-776
    • /
    • 2018
  • This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.

Analysis of the Regional Inequalities of Renewable Energy Resources using Gini's Coefficients (지니계수를 이용한 시군구별 신재생에너지 자원의 불균등성 분석)

  • Lee, Jimin
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.109-119
    • /
    • 2016
  • Most of countries are trying to increase the supply of renewable energy as the substitute of the fossil energy for reducing greenhouse gas emissions. However, renewable energy sources account for only about 3.86% of the total Korea primary energy supply. To increase the rate of renewable energy in Korea's energy consumption, various policies for expanding the use of renewable energy should be applied. Also these policies should be consider renewable energy resources distribution and regional inequality. In this study, the potentials of photovoltaic, wind power and bioenergy from rice straw, livestock waste and food waste are calculated and the distribution characteristic and regional inequalities are analyzed using Gini's coefficient and Gini decomposition method. As the results, technical potentials of photovoltaic and wind power of city region(Gu) has more potential rate than theoretical potentials. Livestock waste has the most unequal distribution (Gini's coefficient: 0.617) among renewable resources.

Analysis of Biomass Energy Potential and Density in Korea (국내(國內) 바이오매스 에너지 잠재량(潛在量) 및 밀집도(密集度) 분석(分析))

  • Kook, Jin Woo;Shin, Ji Hoon;Yoo, Ho Seong;Lee, See-Hoon
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.56-62
    • /
    • 2013
  • The biomass resources is one of promising ways to solve energy exhaustion issues and global warming issues at the same time. To evaluate domestic biomass resources potential such as agricultural wastes, forestry wastes, livestock wastes and municipal solid wastes, statistics data from various organizations were collected and analyzed in this study. Also, space energy densities of each districts in Korea were calculated and analyzed. The results from the evaluation of biomass energy potential and space energy densities in Korea might be useful to estimate the availability of biomass energy conversion processes and to choice a appropriate process to convert domestic biomass into energy.

A Study on Application of The Available Geothermal Energy From Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상)의 열원을 이용한 지열에너지 활용에 관한 연구)

  • Kim, Hyoung-Soo;Jung, Woo-Sung;Ahn, Young-Sub;Hwang, Ki-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.209-214
    • /
    • 2006
  • In this study, application of groundwater thermal energy by use of riverbank filtration(RBF) system is reviewed and checked as an energy resources. Also, the cooling and heating system using RBF was developed in Chang-Won Waterwork site to examine the feasibility in real operation of the system. We estimates the roughly overall energy obtained from RBF system if the system is used in cooling and heating. The water temperature and room temperature have been monitored to evaluate the efficiency of the system and the preliminary results show that the geothermal energy obtained by RBF could be adopted in cooling and heating energy source efficiently.

  • PDF

The World Wind Energy Conference in Berlin (1) (베를린 제1회 세계풍력회의를 다녀와서(1))

  • 기우봉
    • Journal of the Korean Professional Engineers Association
    • /
    • v.35 no.4
    • /
    • pp.52-55
    • /
    • 2002
  • The development of environment-friendly Energy Resources (New Renewable Energy Resources) is one of the global topics these days, considering CO2 Reduction Agreement by Kyoto Protect and the limit of Conventional Energy Resources in near future. Among the New Renewable Energy, Wind Energy is the most feasible Renewable Energy in view of economical and technical aspect at this moment. Last 10 years the Wind Energy Development was really dramatical in Europe. especially in Germany, Denmark and Spain. In this circumstance World Wind Energy Conference was held in Berlin Germany, in order to review the present status and future development of the Wind Energy. This report is a brief report of the Conference .

  • PDF

A development of system dynamics model for water, energy, and food nexus (W-E-F nexus)

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.220-220
    • /
    • 2015
  • Water, energy, and food security already became a risk that threatens people around the world. Increasing of resources demand, rapid urbanization, decreasing of natural resources and climate change are four major problems inducing resources' scarcity. Indeed, water, energy, and food are interconnected each other thus cannot be analyzed separately. That is, for simple example, energy needs water as source for hydropower plant, water needs energy for distribution, and food needs water and energy for production, which is defined as W-E-F nexus. Due to their complicated linkage, it needs a computer model to simulate and analyze the nexus. Development of a computer simulation model using system dynamics approach makes this linkage possible to be visualized and quantified. System dynamics can be defined as an approach to learn the feedback connections of all elements in a complex system, which mean, every element's interaction is simulated simultaneously. Present W-E-F nexus models do not calculate and simulate the element's interaction simultaneously. Existing models only calculate the amount of water and energy resources that needed to provide food, water, or energy without any interaction from the product to resources. The new proposed model tries to cope these lacks by adding the interactions, climate change effect, and government policy to optimize the best options to maintain the resources sustainability. On this first phase of development, the model is developed only to learn and analyze the interaction between elements based on scenario of fulfilling the increasing of resources demand, due to population growth. The model is developed using the Vensim, well-known system dynamics model software. The results are amount of total water, energy, and food demand and production for a certain time period and it is evaluated to determine the sustainability of resources.

  • PDF