• Title/Summary/Keyword: Energy production

Search Result 5,546, Processing Time 0.042 seconds

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Effects of Supplementation of Spent Mushroom(Flammulina velutipes) Substrates on the in vitro Ruminal Fermentation Characteristics and Dry Matter Digestibility of Rye Silage (호밀 사일리지 제조 시 팽이버섯 수확 후 배지 첨가수준이 in vitro 반추위 발효특성 및 건물소화율에 미치는 영향)

  • Kang, Han-Byeol;Cho, Woong-Ki;Cho, Soo-Jeong;Lee, Shin-Ja;Lee, Sung-Sill;Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.51 no.5
    • /
    • pp.91-101
    • /
    • 2017
  • The in vitro experiment was conducted to ensure the supplemental level of spent Flammulina velutipes mushroom substrates(SMS) as an energy source in manufacturing of rye silage. Rye harvested at heading stage was ensiled with spent mushroom substrates of 0%(Control), 20%(R-20), 40%(R-40) and 60%(R-60) as fresh matter basis for 6week. The rumen fluid for preparation of in vitro solution was collected from two cannulated Holstein bulls fed a 40:60 concentrate:timothy diet. The experiment was conducted by 3, 6, 9, 12, 24, and 48 hrs of ncubation time with 3 replications. The silages were evaluated fermentation characteristics and dry matter digestibility(DMD) in vitro. The pH of in vitro solution was inclined to decrease with elapsing the incubation time, and that of the R-60 was significantly(p<0.05) lower than the other treatment at 48 hr of incubation. The microbial growth in vitro was inclined to increase with elapsing the incubation time, and that of the R-20 was significantly(p<0.05) greater than the Control at 48 hr of incubation. Gas production was greater(p<0.05) in the Control than the other treatments at 48 hr of incubation. In vitro dry matter digestibility(IVDMD) was higher with increasing the supplemental level of SMS, and was significantly(p<0.05) lower in the Control compared with other treatments throughout whole incubation time. The IVDMD for R-60 was the highest(p<0.05) among treatments at 24 hr and 48 hr of incubation. Considering of above results and the availability of SMS, SMS could be supplemented by 60% in fresh matter basis for rye silage fermentation.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Study on Hay Preparation Technology for Alfalfa Using Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 알팔파 건초 조제 기술 연구)

  • Kim, Jong Geun;Kim, Hyun Rae;Jeong, Eun Chan;Ahmadi, Farhad;Chang, Tae Kyoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • This experiment was conducted to establish the technology for artificial hay preparation in Korea. Using far-infrared heater, a device that can control temperature, airflow, and far-infrared radiation was produced and conducted on the fourth harvested alfalfa. The drying conditions were carried out by selecting a total of four conditions. For each condition, the radiation rate was set to around 40% (33-42%), and the temperature was set at 58~65℃, and the speed of the airflow was fixed at 60m/s. The overall drying time was set to 30 min in the single and 60 min (30-30 min) and 90 min (30-30-30 min) in the complex condition, and the radiation rate and temperature were changed by time period. In the case of drying condition 1, the final dry matter (DM) content was 46.26%, which did not reach a DM suitable for hay. However, all of the alfalfa corresponding to the remaining drying conditions 2 to 7 showed a DM content of 80% or more, resulting in optimal alfalfa hay production. In power consumption according to the drying conditions, the second drying condition showed the lowest at 4.7 KW, and the remaining drying conditions were as high as 6.5 to 7.1 KW. The crude protein content was found to be high at an average of 25.91% and it showed the highest content in the 5th drying condition (26.93%) and the lowest value in the 6th drying condition (25.16%). The digestibility showed a high value with an average of 84.90%, and there was no significant difference among treatments (p>0.05). Considering the above results, it was judged that drying condition 2 was the most advantageous.

The Korean Girl Group Kara's Differentiation Strategy Which Overcome the Trilemma and Led to the Great Reversal Success (삼중고 탈피 후 대역전의 성공을 이끈 걸 그룹'카라'의 차별화 전략)

  • Kim, Jeong-Seob
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.2
    • /
    • pp.169-178
    • /
    • 2021
  • The Korean girl group "Kara" has suffered the trilemma of its de facto failure to debut, the crisis of team breakup, and the CEO crisis of the agency. But the group has made an outstanding achievement in the history of Korean pop music after overcoming all odds. Their success strategy has never been disclosed by insiders involved in Kara's total music projects. This study has been carried out in the analysis of the strategy to provide academic implications and to honor the contribution of the late CEO Ho-yeon Lee and Kara's key member Ha-ra Gu. Therefore, between Nov. and Dec. 2020, we conducted in-depth interviews with managers, composers, stylists and Ha-ra Gu(Only in 2019, before her death) who took part in the project. The research model is set up by combining Porter's Competitive Advantage Strategy and the music value chain model into categories of "Product Innovation Differentiation (PD)" (producing, album production, performance activities) and "Marketing Differentiation (MD)" (market targeting, image specialization, promotion and communication). The analysis showed that the PD focused on complete rediscovered harmonization and revalued members' personality and sincerity with peppy songs and dainty dances as well as emission of "bright energy" which caused healing effects instead of mimicking other star singers recklessly. In terms of MD, they selected Japan's 10-20s as their main market, increasing intimacy with fans and media with the image of cute+pretty+classy+sexy. The result suggests that Poter's differentiation can function as a meaningful strategy frame in the fostering, hit, and revival of idol groups. In addition, it reaffirmed that spontaneous and passionate activities of early-stage or celebrity fan may serve as a valid catalyst for realizing differentiation, as Kara's caller of Japanese actor Gekidan Hitori caused a strong "priming effect" that drove Kara's unexpected wonderful success in Japan.

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis (인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황)

  • A-Young, Kim;Kee-Young, Kim;Hee Jung, Choi;Hyun Woo, Park;Young Ho, Koh
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.605-614
    • /
    • 2022
  • Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

Appropriate Cold Treatment Periods and Shading Levels on Codonopsis lanceolata for Plug Seedling Production in Summer Season (더덕 플러그묘의 하절기 생산을 위한 적정 저온처리 기간과 차광 수준)

  • Eun Won Park;Jeong Hun Hwang;Hee Sung Hwang;Hyeon Woo Jeong;So Yeong Hwang;Jin Yu;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 2023
  • Codonopsis lanceolata (S. et Z.) Trautv. is mainly cultivated in Korea and China as a medicinal crop. C. lanceolata is difficult to produce plug seedlings in the summer, because C. lanceolata has a low germination rate and is vulnerable to high temperatures. Cold treatment is effective in breaking dormancy of seeds and increasing the germination rate. Shading cultivation can control the solar irradiance received by plants and reduce the damage by high temperatures and strong light. This study was conducted to examine the appropriate cold treatment period for the improving germination of C. lanceolata, and shading level during the summer seedling period. Cold treatment experiments were conducted for 0 (control), 1, 2, 3, and 4 weeks at 4℃ before sowing. In the shading experiment, C. lanceolata was grown for 45 days with 0 (non-treatment), 45, 75% shading levels. Cold treatment for one week significantly improved the germination energy. The plant height, leaf area, and fresh and dry weights of C. lanceolata seedlings were significantly increased under the 45% shading level. Total root length, root surface area, and the number of root tips were significantly higher in shading treatment (45 and 75%) than in non-treatment. The C. lanceolata seedling's compactness and Dickson's quality index were the highest at 45% shading level. Therefore, these results recommended sowing C. lanceolata after cold treatment for one week at 4℃, and 45% shading level could stably culture C. lanceolata plug seedlings during the high temperature period.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.