• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.029 seconds

Dependence of Na+ leakage on intrinsic properties of cation exchange resin in simulated secondary environment for nuclear power plants

  • Hyun Kyoung Ahn;Chi Hyun An;Byung Gi Park;In Hyoung Rhee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.640-647
    • /
    • 2023
  • Material corrosion in nuclear power plant (NPP) is not controlled only by amine injection but also by ion exchange (IX) which is the best option to remove trace Na+. This study was conducted to understand the Na+ leakage characteristics of IX beds packed with ethanolamine-form (ETAH-form) and hydrogen-form (H-form) resins in the simulated water-steam cycle in terms of intrinsic behaviors of four kinds of cation-exchange resins through ASTM test and Vanselow mass action modeling. Na+ was inappreciably escaped throughout the channel created in resin layer. Na+ leakage from IX bed was non-linearly raised because of its decreasing selectivity with increasing Na+ capture and with increasing the fraction of ETAH-form resin. Na+ did not reach the breakthrough earlier than ETAH+ and NH4+ due to the increased selectivity of Na+ to the cation-exchange resin (H+ < ETAH+ < NH4+ ≪ Na+) at the feed composition. Na+ leakage from the resin bed filled with small particles was decreased due to the enhanced dynamic IX processes, regardless of its low selectivity. Thus, the particle size is a predominant factor among intrinsic properties of IX resin to reduce Na+ leakage from the condensate polishing plant (CPP) in NPPs.

Applying a big data analysis to evaluate the suitability of shelter locations for the evacuation of residents in case of radiological emergencies

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.261-269
    • /
    • 2023
  • During a nuclear power plant (NPP) accident, radioactive material may be released into the surrounding environment in the form of a radioactive plume. The behavior of the radioactive plume is influenced by meteorological factors such as wind direction and speed. If the residents are evacuated to a shelter in the direction of the flow of the radioactive plume, the radiation exposure of the residents may increase, contrary to the purpose of the evacuation. To avoid such an undesirable outcome, this paper applies a big data analysis to evaluate the suitability of the shelter locations near 5 NPPs in the Republic of Korea in terms of the seasonal wind direction frequency in those areas. To this end, the wind data measured around the NPPs from 2016 to 2020 were analyzed to derive the seasonal wind direction frequency using a big data analysis. These analyses results were then used to determine how many shelters around NPPs locate in areas with prevailing wind direction per season. Then, suggestions were made on the direction for residents not to evacuate, if possible, that is, the prevailing seasonal wind directions for 5 NPPs, depending on the season in which the accident occurs.

Current Status of Water Electrolysis Technology and Large-scale Demonstration Projects in Korea and Overseas (국내외 수전해 기술 및 대규모 실증 프로젝트 진행 현황)

  • JONGMIN BAEK;SU HYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.14-26
    • /
    • 2024
  • Global efforts continue with the goal of transition to a "carbon neutral (net zero)" society with zero carbon emissions by 2050. For this purpose, the technology of water electrolysis is being developed, which can store electricity generated from renewable energies in large quantities and over a long period of time as hydrogen. Recently, various research and large-scale projects on 'green hydrogen', which has no carbon emissions, are being conducted. In this paper, a comparison of water electrolysis technologies was carried out and, based on data provided by the International Energy Agency (IEA), large-scale water electrolysis demonstration projects were analyzed by classifying them by technology, power supply, country and end user. It is expected that through the analysis of large-scale water electrolysis demonstration projects, research directions and road maps can be provided for the development/implementation of commercial projects in the future.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Understanding and Attitude to Sustainable Development of College Students for a Nuclear Power Plant Construction in Education for Sustainable Development through Panel Discussion (패널토론을 적용한 지속가능발전교육에서 대학생의 원자력발전소 건립에 대한 지속가능발전 인식과 태도)

  • MOON, Sungchae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1236-1251
    • /
    • 2015
  • This study examined understanding and attitude of sustainable development(SD) of 38 college students in a nuclear power plant construction after education for sustainable development(ESD) through panel discussion. The results were as follows: First, after lesson 66% of students were expected that SD is possible if scientific technology is developed and a frugal life for the protection of environment is carried out. However, the remaining students regarded SD as an ideal concept, because they thought it is not possible to pursue environmental sustainability and socio-economic development simultaneously. Second, students' opinions in the evaluation of constructing a nuclear power plant in three aspects(environment, society and economy) before and after panel discussion were changed as follows; 1) After panel discussion, the objectors increased to 21% in economic evaluation, while the supporters increased to 11% in environmental evaluation. 2) Students majoring in engineering or natural sciences changed their opinions to agree in environmental evaluation because they considered a nuclear power plant safe and eco-energy. However students majoring in social science/business or liberal arts/arts changed their opinions to disagree in economic evaluation because they considered a nuclear power plant as high-cost energy when assessing danger-accidents cost, public consensus cost, operation and maintenance cost, and waste disposal cost. 3) This change of decision-making in students majoring in social science/business or liberal arts/arts after panel discussion was statistically significant(p<0.05). Implications of panel discussion as a teaching and learning method in ESD are also discussed.

o-DGT as a Biomimic Surrogate to Assess Phytoaccumulation of Phenanthrene in Contaminated Soils (o-DGT를 생체모사 대표물질로 이용한 오염토양에서 phenanthrene의 식물축적 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.16-25
    • /
    • 2019
  • Anthropogenic polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fuels and industrial waste. PAHs can be widely exposed to the environment (water, soil and groundwater). PAHs are potentially toxic, mutagenic and/or carcinogenic. Fundamental studies such as biota uptake (e.g., earthworm and plant) of PAHs are highly needed. It is necessary to develop alternative ways to evaluate bioavailability of PAHs instead of using living organisms because it is time-consuming, difficult to apply in the field, and also exaction method is tedious and time-consuming. In this study, sorption behaviors of phenanthrene were evaluated to predict the fate of PAHs in soils. Moreover, bioaccumulation of PAHs in an artificially contaminated soil was evaluated using pea plant (Pisum sativum) as a bioindicator. A novel passive sampler, organic-diffusive gradient in thin-film (o-DGT) for PAHs was newly synthesized, tested as a biomimic surrogate and compared with plant accumulation. Sorption partitioning coefficient (KP) and sorption capacity (KF) were in the order of natural soil > loess corresponding to the increase in organic carbon content (foc). Biota-to-soil accumulation factor (BSAF) and DGT-to-soil accumulation factor (DSAF) were evaluated. o-DGT uptake was linearly correlated with pea plant uptake of phenanthrene in contaminated soil (R2=0.863). The Tenax TA based o-DGT as a biomimic surrogate can be used for the prediction of pea plant uptake of phenanthrene in contaminated soil.

Applied Cases and Application Technologies of Ultrasonic Nanocrystalline Surface Modification and Accelerated Fatigue Life Evaluation Using Ultrasonic Elastic Vibrational Energy (초음파탄성진동에너지를 이용한 표면개질처리 및 가속피로수명평가 기술의 적용사례 및 응용기술)

  • Jo, In-Sik;Jo, In-Ho;Oh, Joo-Yeon;Lee, Chang-Soon;Pyoun, Young-Sik;Park, In-Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.115-121
    • /
    • 2013
  • It is greatly expected that the technologies of durability enhancement and evaluation for the core structures of plant facilities, marine plant and bridge constructures will be greatly expanded in the plant industry fields. In this study, the actively ongoing applied cases were tried to be analyzed in the present domestic industry fields through the Ultrasonic Nanocrystalline Surface Modification (UNSM) and Ultrasonic Fatigue Test (UFT) technologies using ultrasonic elastic vibrational energy, and the new application technology to improve the durability of plant industry field, especially plant facilities, marine plant and core weld components of bridge constructures will be presented.

Selection and Strategies of New Leading Businesses in International Construction Market (해외건설시장의 신성장동력 공종선정 및 진출전략 도출)

  • Choi, Seok-Jin;Lee, Kang-Wook;Han, Seung-Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.2
    • /
    • pp.25-36
    • /
    • 2012
  • As the international construction market is rapidly expanding, Korean contractors have the need for having new leading businesses for their sustainable growth and high performance. Thus, this research tried to explore new leading businesses with two questions: 'What can be the new leading businesses?' and 'How can Korean contractors implement new leading businesses?' To this end, based on Porter's five forces framework and the resource-based view (RBV), we first derive three evaluation criteria (possibility of market entry, possibility of profit earning, and possibility of value-added earning). Next, we developed a framework for business evaluation which considers external market condition, internal competitiveness, and spin-off effects toward domestic market. Based on the framework, we defined green-energy plant, environmental plant, desalination plant, nuclear power plant, new urban development, and high-rise building as new leading business. Then, we selected green energy plant, environmental plant, and new urban development for the purpose of prior occupation of the market, consolidation of the competitiveness, and expansion of the ripple effect, respectively. Finally, we deduced market entry strategies for each business by investigating experts' opinions.

Note on the Development of Ballast Water Shifting System for Solar Tracking of the Floating Photovoltaic Plant (밸러스트 수 이동으로 태양을 추적하는 부유식 태양광 발전시스템 개발)

  • Oh, Jungkeun;Kim, Jun-Ho;Kim, Seung-Sup;Kim, Hyochul;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.290-299
    • /
    • 2016
  • The most powerful energy resource in nature is solar energy which becomes directly converted to electric power in worldwide. Most of the photovoltaic power plants are commonly installed on sunny side of the ground. Thus the installation of photovoltaic power plant could produce an unexpected adverse effect by sacrificing the productivity from green field or forest. To avoid these adverse effect floating photovoltaic plant has been devised and installed on inland reservoir. The photovoltaic plant could utilize ignored water surface without sacrificing the productivity of the ground. Additionally the photovoltaic efficiency has been reenforced by the cooling effect induced by the circulating air flow from water surface. The floating photovoltaic plant could be furnished solar tracking ability by tilting the system operated with the aid of the ballast system. This report is provided to introduce the design of the floating structure with solar panel which furnished solar tracking ability with the aid of ballast system.

Determination of Nutrient Contents and In vitro Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

  • Boga, M.;Yurtseven, S.;Kilic, U.;Aydemir, S.;Polat, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.825-831
    • /
    • 2014
  • The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (EC)<4 dS/m; low salt: 4 dS/m>EC<8 dS/m, medium saline: 8 dS/m>EC<16 dS/m and high salt: 16 dS/m>EC) was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM), acid detergent fiber, digestible dry matter, dry matter intake (DMI) were affected by plant, salinity and plant${\times}$salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV), and DMI were affected by salinity and plant${\times}$salinity interaction. Mineral contents were affected by plant species, salinity and salinity${\times}$plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME), and net energy lactation ($NE_L$) were affected by plant and plant${\times}$salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.