• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.034 seconds

Commercialization of Ion Exchange Fiber System for Recovering Valuable Metals in Plating Wastewater (도금 폐수 중 유가 금속 회수를 위한 이온교환섬유의 상용화기술)

  • You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.535-541
    • /
    • 2017
  • On the basis of 200 ppm of Ag and 120 l/h of feed flow rate, we built a pilot plant of an ion exchange fiber system having an double tube type ion exchange chamber with strong base ion exchange fiber (FIVAN A-6) which was designed to replace fibers easily and to eliminate the need for a fixture. The following results were obtained for the double tube type of ion exchange fiber system with an ion exchange capacity of 4.6 meq/g for Ag. The adsorption process was operated in the range of 40~90 l/h after confirming the effect of the flow rate and, pH did not affect formation of complex ion of Ag in the range of pH 7~12. In the case of backwash process, the recovery rate of Ag was tested in the range of 60~120 l/h and comparative experiments were carried out using NaOH, $NH_4Cl$, and NaCl as the chemicals for backwash. Although the desorption time was shortened at higher concentration, the desorption efficiency per mol was lowered. Therefore, it was confirmed that the desorption time and the concentration should be well balanced to operate economically. The desorption pattern of the backwash process is slower than the adsorption process and takes a lot of time. The results showed that the Ag adsorption ratio was 99.5% or more and the Ag recovery ratio was 96% or more, and commercialization was possible.

Study on Remote control and monitoring system of the multipurpose guard rail using USN (USN을 이용한 다목적 가드레일의 원격제어 및 모니터링 시스템에 관한 연구)

  • Song, Je-Ho;Lee, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7176-7181
    • /
    • 2015
  • This thesis is about the system where the solar module is attached to the high functional guardrail posts with anti-weed, anti-plant, and road-kill applied to produce internal power, enabling the integrated control and real-time monitoring of appearance of wildlife and road conditions using the USN. The whole system consists of a photovoltaic module(PV), a detection sensor(pyroelectric), a controller(operation select and motion sensor), the USN system, the DB(sound and flash), an output unit of sound and flash, and the control system of road-kill prevention and safety induction for vehicles. Thus this study aims to address the remote control and monitoring system of multipurpose guardrails to improve road environment, prevent road-kills, protect wild animals, and guide cars safely by using the USN which is combined with new renewable energy and IT convergence technology. As a result of the study on the remote control and monitoring system using the USN, it was ascertained that the response time of the unmanned sensing system was within 5.1 ms with the current consumption of 0.328 mA, and the data transmission speed of the remote control system was 250 kbps with the current consumption of 0.283 mA.

An Analytical Study on Generation of Pore-Water Pressures Induced by Flow and Waves in Seabed, and Resulting Liquefaction (흐름과 파에 의한 해저지반내 간극수압의 발생과 액상화에 관한 해석적인 연구)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Bae, Ki-Seong;Jeon, Jong-Hyeok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.324-338
    • /
    • 2015
  • Analytical solutions for interaction between seabed and waves such as progressive wave or partial standing wave with arbitrary reflection ratio or standing wave have been developed by many researchers including Lee et al.(2014; 2015a; 2015b; 2015c; 2015d) and Yamamoto et al.(1978). They handled the pore-water pressure as oscillating pore-water pressure and residual pore-water pressure separately and discussed the seabed response on each pore-water pressure. However, based on field observations and laboratory experiments, the oscillating and residual pore-water pressures in the seabed do occur not separately but together at the same time. Therefore, the pore-water pressure should be investigated from a total pore-water pressure point of view. Thus, in this paper, the wave-induced seabed response including liquefaction depth was discussed among oscillating, residual, and total pore-water pressures' point of view according to the variation of wave, seabed, and flow conditions. From the results, in the field of flow with the same direction of progressive wave, the following seabed response has been identified; with increase of flow velocity, the dimensionless oscillating pore-water pressure increases, but the dimensionless residual pore-water pressure decreases, and consequently the dimensionless total pore-water pressure and the dimensionless liquefaction depth decrease.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater Using Concrete Mat Cover (for Irregular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석 (불규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.20-35
    • /
    • 2017
  • In the case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be significantly generated due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result of the decrease in the effective stress, and eventually the possibility of structure failure will be increased. The study of liquefaction potential for regular waves had already done, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a safer design can be obtained when analyzing case with a regular wave condition corresponding to a significant wave of the irregular wave.

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Water Pollution Source Tracing Using FDC and Correlation Analysis in Geumho River Basin (FDC 및 상관관계 분석을 이용한 금호강 유역에서의 오염원추적)

  • Park, Kyung Ok;Lee, Chang Hee;Cha, Il Geun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.232-243
    • /
    • 2016
  • In order to establish the watershed water quality management strategy of Total Maximum Daily Load(TMDL), it is necessary to understand the relationship between water quality component impacts, and to identify the impacts on downstream target point of watershed water quality management of waste treatment plant(WTP) discharge and upstream/tributary loads. In this study, we determined the impacts between the water quality contaminants, and traced water pollution sources using monitoring data of ministry of environment in tributaries and main stream and WTP monitoring data. Test area is set to Geumho river basin which has characteristics of urban and rural area and composes of GeumhoA, GeumhoB, GeumhoC watershed units in TMDL. The clustering with five grades of discharge data and the correlation analysis were performed through the FDC(Flow duration curve) analysis, which more clearly identified the points and water contaminants deteriorating target water quality of downstream point. This can be used as a tool for tracing pollutants with FDC analysis, and will help us establish the watershed water quality management strategy for TMDL target point in watershed more effectively.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Analysis of Confidence Interval of Design Wave Height Estimated Using a Finite Number of Data (한정된 자료로 추정한 설계파고의 신뢰구간 분석)

  • Jeong, Weon-Mu;Cho, Hong-Yeon;Kim, Gunwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.191-199
    • /
    • 2013
  • It is estimated and analyzed that the design wave height and the confidence interval (hereafter CI) according to the return period using the fourteen-year wave data obtained at Pusan New Port. The functions used in the extreme value analysis are the Gumbel function, the Weibull function, and the Kernel function. The CI of the estimated wave heights was predicted using one of the Monte-Carlo simulation methods, the Bootstrap method. The analysis results of the estimated CI of the design wave height indicate that over 150 years of data is necessary in order to satisfy an approximately ${\pm}$10% CI. Also, estimating the number of practically possible data to be around 25~50, the allowable error was found to be approximately ${\pm}$16~22% for Type I PDF and ${\pm}$18~24% for Type III PDF. Whereas, the Kernel distribution method, a typical non-parametric method, shows that the CI of the method is below 40% in comparison with the CI of the other methods and the estimated design wave height is 1.2~1.6 m lower than that of the other methods.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

Cross-sectional Cell Anatomy and Physiological Growth Responses of Cells in Root Growth Zones of Two Tall Fescue Genotypes at Two Nitrogen Levels (톨페스큐 뿌리생장부위의 횡적 해부구조 및 세포생장의 생리적 반응에 대한 질소효과)

  • Beom Heon, Song;Curtis J, Nelson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.297-307
    • /
    • 1995
  • Anatomical and physiological studies of sink tissues are required for better understanding the biological plant growth system and energy metabolism Anatomy of root growth zones of two genotypes of tall fescue (Festuca arundinacea Schreb.) receiving 50 or 200 ppm N were determined, Cross-sectional anatomy and cells responses of root growth zones were observed and examined. Rapid radial root expansion occurred within the first 1.0 mm from root apex, and then increased gradually for both genotypes and N levels. Another increase in diameter occurred at high N after cell elongation slowed near 3.0 mm. Area of the central cylinder cell increased rapidly near the root apex. However, it then decreased again about 1.0 to 1.5 mm from the apex, perhaps because of pressure from the rapid increase of root diameter due largely to an increasing proportion of cortex and epidermis or hypodermis in the distal portion of the root growth zone. Root area from the apical initial to 6.0 mm distal consisted of 10 to 18% epidermis or exodermis, 67 to 79% cortex, and 10 to 22% vascular cylinder cells containing cambium cells (6 to 20%) and xylem cells (0.8 to 2.5%). These data indicate that N application affects root growth radially by increasing mainly cortex cell area, with less effect on epidermis and central cylinder cells.

  • PDF