• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.036 seconds

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.

Bio-methane production for city gas by membrane separation of digestion gas (소화가스의 막 분리 정제에 의한 도시가스용 바이오메탄 생산)

  • Choi, Keun-Hee;Jo, Min-Seok;Choi, Won-Young;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1106-1115
    • /
    • 2020
  • Research was conducted on the production of bio-methane for city gas, from food waste digestion gas using two membrane-separation methods(4SBR and 3SDR) in a commercial plant. A purity of 98.9% can be obtained using either method. The recovery rate of methane from the digestion gas was 88.1% for 4SBR and 79.4% for 3SDR. the ratios of bio-methane production to treated digestion gas were 53.5% for 4SBR and 49.4% for 3SDR. However, the 4SBR method had a higher ratio of returned gas(56.5%), approximately twice that of 3SDR, making 3SDR the more desirable method in terms of maximum treat capacity. Therefore, 4SBR seems more economical when the digestion gas to be treated is less than 200 N㎥/day, while 3SDR is more suited to treat gas volumes of more than 240 N㎥/day. The relative deviation of each operation index, compared to mean values, was generally greater for the 4SBR method. Additionally, the correlation coefficients between major system indexes, such as bio-methane production and bio-methane draw out pressure(which is the main control measure of membrane facility) showed that these indexes are more closely related in the 3SDR method.

An Analysis on the Educational Needs for the Smart Farm: Focusing on SMEs in Jeon-nam Area (중소·중견기업의 스마트팜 교육 수요 분석: 전남지역을 중심으로)

  • Hwang, Doo-hee;Park, Geum-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.649-655
    • /
    • 2020
  • This study determined effective educational strategies by investigating and analyzing the related educational demands for SMEs (small and medium-sized enterprises) in the 4th Industrial Revolution based area of smart farms. In order to derive the approprate educational strategies, Importance-Performance Analysis (IPA) and Borich's Needs Assessment Model were conducted based on the smart farm technological field. As a result, the education demand survey showed high demand for production systems and intelligent farm machinery. In detail, Borich's analysis showed the need for pest prevention and diagnosis technology (8.03), network and analysis SW linkage technology (7.83), and intelligent farm worker-agricultural power system-electric energy hybrid technology (7.43). In contrast, smart plant factories (4.09), lighting technology for growth control (4.46) and structure construction technology (4.62) showed low demands. Based on this, the IPA portfolio shows that the network and analysis SW linkage technology and the CAN-based complex center are urgently needed. However, the technology that has already been developed, such as smart factory platform development, growth control lighting technology and structure construction technology, was oversized. Based on these results, it is possible to strategically suggest the customized training programs for industrial sectors of SMEs that reflect the needs for efficiently operating smart farms. This study also provides effective ways to operate the relevant training programs.

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

Yield and Quality of Silage Corn as Affected by Hybrid Maturity, Planting Date and Harvest Stage

  • Kim, J.D.;Kwon, C.H.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1705-1711
    • /
    • 2001
  • Silage corn (Zea mays L) is grown extensively in livestock operations, and many managements focus on forage yield. This experiment was conducted at Seoul National University (SNU) Experimental Livestock Farm, Suwon in 1998. We determined the effect of planting date and harvest stage on forage yield and quality responses of corn hybrids (five relative maturity groups). The five maturity groups (100 d, 106 d, 111 d, 119 d and 125 d) were planted on 15 April and 15 May, and harvested at maturity stages (1/3, 1/2 and 2/3 kernel milkline). Whole plant dry matter (DM) and ear percentages had significant differences among corn hybrids. Ear percentages of early maturing corns (100 d and 106 d) were higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date for all corn hybrids. The DM and total digestible nutrients (TDN) yields of the 106 d and 111 d corn hybrids were higher than other hybrids, and the DM and TDN yields at the early planting date were higher than that at the late planting date. The acid detergent fiber (ADF) and neutral detergent fiber (NDF) percentages were greater for the late maturity corn hybrids. For plants of the early planting date, the ADF and NDF percentages were lower than for those of late planting date for hybrids. From the comparison among harvest stages, ADF and NDF percentages were decreased as harvest stage progressed. The TDN, net energy for lactation (NEL), and cellulase digestible organic matter of dry matter (CDOMD) were decreased as maturity of corn hybrid delayed. The TDN, NEL, and CDOMD values at the early planting date were higher than those at the late planting date among for corn hybrids. From the comparison among harvest dates, TDN, NEL, and CDOMD values were increased as harvest stage progressed. The correlation coefficient for DM percentage of grain at harvest with DM and TDN yields were 0.68*** and 0.76***, respectively. And the correlation coefficient for ear percentage with ADF, NDF, and CDOMD were -0.81***, -0.82*** and 0.73***, respectively. Our study showed differences of silage corn in forage production and quality resulting from hybrid maturity, planting date, and harvest stage. We believe that for the best silage corn, selection of the hybrid and best management practices are very important.

Prediction of NOx emission for marine gas engines (선박용 가스엔진의 NOx 배출량예측에 관한 연구)

  • Jang, Ha-Seek;Lee, Ji-Woong;Lee, Kang-Ki;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.658-665
    • /
    • 2014
  • Natural gas for marine diesel engine is considered as an important and clean source of energy because of simultaneously reducing the emission of NOx, SOx and GHG. Especially with a appearance of shale gas, the using of natural gas has been investigated aggressively and expected to expand rapidly. By the reports, gas engine and diesel engine were both in a similar performance in the power aspect, and the SFOC of gas engine was shown a little better than that of diesel engine. But the characteristics of exhaust gas emission were different according to various combustion technologies. And with lean burn technology, the emission of NOx could be reduced to 85% lower than that of diesel engine. In this paper, it was described that a simulation program has been developed to predict NOx emission. The developed program is adopted two-zone model and Wiebe function for combustion in cylinder. The effects of premixed and diffusive combustion could be simulated by using the excess air ratio as input data. And it was confirmed that the results of simulation were agreed with the general trends of exhaust gas emission according to various combustion conditions such as lean burn, premixed and diffusive combustion.

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process (Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성)

  • Hyun, Ju Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.111-118
    • /
    • 2009
  • A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature($850{\sim}1,100^{\circ}C$), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this. Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to $1,000^{\circ}C$. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the non-reacted $NH_3$ was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of $NH_3$ to SCR at the back of SNCR.