DOI QR코드

DOI QR Code

소화가스의 막 분리 정제에 의한 도시가스용 바이오메탄 생산

Bio-methane production for city gas by membrane separation of digestion gas

  • 최근희 (서울과학기술대학교 에너지환경대학원) ;
  • 조민석 ((주)한국종합기술 환경신성장부) ;
  • 최원영 ((주)한국종합기술 환경신성장부) ;
  • 천승규 (서울과학기술대학교 에너지환경대학원)
  • 투고 : 2020.09.03
  • 심사 : 2020.10.29
  • 발행 : 2020.10.31

초록

막 분리 운전방식에 따른 음폐수 소화가스의 도시가스용 바이오메탄 생산연구를 상업용 시설을 대상으로 수행하였다. 연구결과 바이오메탄의 순도는 4SBR과 3SDR 모두 98.9%를 달성할 수 있었다. 소화가스 내 메탄 회수율은 4SBR 88.1%, 3SDR 79.4%이었고, 처리 소화가스량 대비 바이오메탄 생산율도 4SBR이 53.5%로 3SDR의 49.4%보다 높았다. 그러나 막 분리시설에 공급되는 가스 중 반송가스의 비율은 4SBR이 56.5%로 3SDR 보다 두 배가량 컸으며, 이로 인해 최대 처리량에 있어서는 3SDR이 양호한 결과를 보였다. 따라서 소화가스 200 N㎥/day 이하는 4SBR, 240 N㎥/day 이상에서는 3SDR이 경제성이 좋은 것으로 판단되었다. 공정 운전변수들의 평균값 대비 운전 값들의 상대편차는 전반적으로 4SBR이 컸으며, 또한 주 운전조절 수단인 바이오메탄 인출압력 대비 주요 지표들의 상관관계에 있어서는 3SDR가 보다 직접적인 관계를 보여주었다.

Research was conducted on the production of bio-methane for city gas, from food waste digestion gas using two membrane-separation methods(4SBR and 3SDR) in a commercial plant. A purity of 98.9% can be obtained using either method. The recovery rate of methane from the digestion gas was 88.1% for 4SBR and 79.4% for 3SDR. the ratios of bio-methane production to treated digestion gas were 53.5% for 4SBR and 49.4% for 3SDR. However, the 4SBR method had a higher ratio of returned gas(56.5%), approximately twice that of 3SDR, making 3SDR the more desirable method in terms of maximum treat capacity. Therefore, 4SBR seems more economical when the digestion gas to be treated is less than 200 N㎥/day, while 3SDR is more suited to treat gas volumes of more than 240 N㎥/day. The relative deviation of each operation index, compared to mean values, was generally greater for the 4SBR method. Additionally, the correlation coefficients between major system indexes, such as bio-methane production and bio-methane draw out pressure(which is the main control measure of membrane facility) showed that these indexes are more closely related in the 3SDR method.

키워드

참고문헌

  1. M. Miltner, A. Makaruk, M. Harasek, "Review on available biogas upgrading technologies and innovations towards advanced solutions", J. Clean. Prod., Vol.161 pp. 1329-1337, (2017). https://doi.org/10.1016/j.jclepro.2017.06.045
  2. S. Nilsson Paledal, K. Arrhenius, J. Moestedt, Engelbrektsson, J. and Stensen, K., "Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG)", Chemosphere, Vol.145 pp. 424-430, (2016). https://doi.org/10.1016/j.chemosphere.2015.11.083
  3. S. I. Han, K. S. Hwang, "Study on Materials and Process Systems for $CO_2$ separation from Combustion of Fossil Fuels", J. Korean Oil Chem. Soc., Vol.31 No.3 pp. 375-386, (2014). https://doi.org/10.12925/jkocs.2014.31.3.375
  4. J. H. Lee, G. H. Lee, K. S. Choi, J. Poudel, S. R. Kim, S. C. Oh, "Separation Characteristics of $CH_4/CO_2$ Mixed Gas by Polyamide Composite Membrane", J. Korean Oil Chem. Soc., Vol.29 No.3. pp. 478-485, (2012).
  5. S. Kuroda, T. Nagaishi, M. Kameyama, K. Koido, Y. Seo, K. Dowaki, "Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation", Internatl. j. hydrogen energy, Vol.43, pp. 16573-16588, (2018). https://doi.org/10.1016/j.ijhydene.2018.07.065
  6. I. Angelidaki, L. Treu, P. Tsapekos, G. Luo, S. Campanaro, H. Wenzel, P.G. Kougias, "Biogas upgrading and utilization: Current status and perspectives", Biotechnol. Advances, Vol.36 No.2 pp. 452-466, (2018). https://doi.org/10.1016/j.biotechadv.2018.01.011
  7. L. Lombardi, G. Francini, "Technoeconomic and environmental assessment of the main biogas upgrading technologies", Renew. Energy, Vol.156 pp. 440-458, (2020). https://doi.org/10.1016/j.renene.2020.04.083
  8. J. Peppers, Y. Li, J. Xue, X. Chen, C. Alaimo, L. Wong, T. Young, P.G. Green, B. Jenkins, R. Zhang, M.J. Kleeman, "Performance analysis of membrane separation for upgrading biogas to biomethane at small scale production sites", Biomass and Bioenergy, Vol.128 pp. 1-9, (2019).
  9. M. G. Buonomenna, J. Bae, "Membrane processes and renewable energies", Renew. Sustainable Energy Reviews, Vol.43 pp. 1347-1390, (2015).
  10. S. Haider, A. Lindbrathen, M. B. Hagg, "Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology", Green Energy Environ., Vol.1 No.3 pp. 222-234, (2016). https://doi.org/10.1016/j.gee.2016.10.003
  11. M. Scholz, M. Alders, T. Lohaus, M. Wessling, "Structural optimization of membrane-based biogas upgrading processes", J. Membr. Sci., Vol.474 pp. 1-10, (2015). https://doi.org/10.1016/j.memsci.2014.08.032
  12. A. K. Zulhairun, M. N. Subramaniam, A. Samavati, M. K. N. Ramli, M. Krishparao, P. S. Goh, A.F. Ismail, "High-flux polysulfone mixed matrix hollow fiber membrane incorporating mesoporous titania nanotubes for gas separation", Sep. Purif. Technol., Vol.180 pp. 13-22, (2017). https://doi.org/10.1016/j.seppur.2017.02.039
  13. Y. Li, Y. Chen, J. Wu, "Enhancement of methane production in anaerobic digestion process: A, review", Applied Energy, Vol.240 pp. 120-137, (2019). https://doi.org/10.1016/j.apenergy.2019.01.243
  14. I. Iliuta, F. Larachi, "Concept of bifunctional Redox iron-chelate process for H2S removal in pulp and paper atmospheric emissions", Chem. Eng. Sci., Vol.58 No.23-24 pp. 5305-5314, (2003). https://doi.org/10.1016/j.ces.2003.09.009
  15. T. Katoh, M. Tokumura, H. Yoshikawa, Yoshinori Kawase, "Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: Nonideal mixing flows in permeate and residuesides using the tanks-in-series model", Sep. Purif. Technol., Vol.76 No.3 pp. 362-372, (2011). https://doi.org/10.1016/j.seppur.2010.11.006
  16. N. Pannucharoenwong, A. Worasaen, C. Benjapiyaporn, J. Jongpluempiti, P. Vengsungnle, "Comparison of Bio-Methane Gas Wobbe Index In Different Animal Manure Substrate", Energy Procedia, Vol.138 pp. 273-277, (2017). https://doi.org/10.1016/j.egypro.2017.10.056
  17. K. Berean, J. Z. Ou, M. Nour, K. Latham, C. McSweeney, D. Paull, A. Halim, S. Kentish, C. M. Doherty, A. J. Hill, K. Kalantar-zadeh, "The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary $CO_2$ and $CH_4$ gas permeation", Sep. Purif. Technol., Vol.122 pp. 96-104, (2014). https://doi.org/10.1016/j.seppur.2013.11.006