• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.038 seconds

Effects of Nitrogen Sources on RNA, DNA and other Phosphorus Fractions of Soybean Cultivars Different in Phosphorus Sensitivity (인산감수성(燐酸感受性)이 다른 대두품종(大豆品種)의 RNA, DNA 및 기타 인산형태(燐酸形態)에 대(對)한 질소원(窒素源)의 영향(影響)에 관한 연구(硏究))

  • Park, Hoon;Stutte, Charls A.
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.172-183
    • /
    • 1976
  • RNA, DNA and other phosphorus fractions were determined in the leaf and root of soybean plants different in phosphorus sensitivity grown in $NH_4-N,\;NO_3-N$ and urea medium. The phosphorus sensitive cultivars contained higher ASIP (acid soluble inorganic phosphorus) than the tolerant cultivars with all nitrogen sources. ASIP was highest in the urea treated plants and lowest in the nitrate treated plants. Total phosphorus content was mostly affected with increase in ASIP. When ASIP increased, acid solsuble organic phosphorus(ASOP), phospholipids (L-P), RNA-P, residual phosphorus (R-P) tended to increase, while DNA-P showed little change. The percent RNA-P or DNA-P of total phosphorus in the nitrate treated plant was twice that in the ammonium treated plant, which were also higher in tolerant cultivars regardless of nitrogen sources. The percent ASOP in total acid soluble phosphorus $(ASOP/ASP{\times}100)$ decreased as phosphorus sensitivity decreased. Indications are that phosphorus sensitivity depends on the relative sizes of phosphorus metabolic pools. Total dry matter yield was negatively correlated with total phosphorus (r=0.84 significant at 0.01P), ASIP (0.84 significant at 0.01P) and residual phosphorus (0.69 significant at 0.05P). ASOP showed positive correlation with L-P, RNA-P and DNA-P but negative with R-P. RNA-P was significanly correlated only with L-P (0.63 at P=0.01). There was significant interaction (0.01) among nitrogen sources, cultivars and phosphorus metabolic pools. Phosphorus sensitivity and ammonium toxicity appear to be same in view of energy metabolism, that is, the former inhibits the conversion of ATP to ADP (energy releasing) through phosphate potential while the latter inhibits ATP formation (energy storing).

  • PDF

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Genetic Variation and Phylogenetic Relationship of Taraxacum Based on Chloroplast DNA (trnL-trnF and rps16-trnK) Sequences (엽록체 DNA (trnL-trnF, rps16-trnK) 염기서열에 의한 국내 민들레속 유전자원의 유전적 변이와 유연관계 분석)

  • Ryu, Jaihyunk;Lyu, Jae-il;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.522-534
    • /
    • 2017
  • This study was investigated genetic variation in 24 Taraxacum accessions from various regions in South Korea based on the sequences of two chloroplast DNA (cpDNA) regions (trnL-trnF and rps16-trnK). T. mongolicum, T. officinale, and T. laevigatum were triploid, and T. coreanum and T. coreanum var. flavescens were tetraploid. The trnL-trnF region in native Korean dandelions (T. mongolicum, T. coreanum, and T. coreanum var. flavescens) were ranged from 931 to 935 bp in length, and that of naturalized dandelions were ranged from 910 bp (T. officinale) to 975 bp (T. laevigatum) in length. The rps16-trnK region in T. mongolicum, T. coreanum, T. coreanum var. flavescens, T. officinale, and T. laevigatum was 882-883 bp, 875-881 bp, 878-883 bp, 874-876 bp, and 847-876 bp, respectively, in length. The sequence similarity matrix of the trnL-trnF region ranged from 0.860 to 1.00 with an average of 0.949, and that of the rps16-trnK region ranged from 0.919 to 1.000 with an average of 0.967. According to the phylogenetic analysis, the Korean native taxa and naturalized taxa were divided independent clade in two cpDNA region. T. coreanum var. flavescens clustered only with T. coreanum, and there were no significant differences in their nucleotide sequences. The finding that two accessions (T. coreanum; Jogesan, T. mongolicum; Gangyang) had a high level of genetic variation suggests their utility for breeding materials.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

The Optimum Photoperiod on Floral Differentiation of French Marigold Grown in a Closed-type Plant Factory (완전제어형 식물공장에서 재배되는 프렌치매리골드의 화아분화를 위한 최적의 광주기 구명)

  • Nayoung Kwak;Bo Hyun Sung;K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • Among the various environmental conditions necessary for growing crops, light is closely related to the anthesis. This study aimed to determine the optimal photoperiod affecting floral differentiation in an edible flower, marigold, to efficiently cultivate the crops in a closed-type plant factory. The experiment was conducted with photoperiods of 4, 8, 12, and 16 hours. French marigold (Tagetes patula L.) 'Durango Red' seeds were sown in polyurethane sponges, and the photoperiod treatments were applied immediately. The extent of floral differentiation was examined at 2-3 day intervals, defined as the visible appearance of flower buds at least 2 mm in size. The growth parameters such as shoot fresh weight and dry weight, height, and leaf area were measured. The optimal photoperiod was determined based on the days when the floral differentiation had occurred in 50% of the total plants. In the 4-hour treatment, proper growth and flower buds did not appear. From the 8-hour treatment, the plant grew normally, and floral differentiation occurred, however, the 8-hour treatment showed the slowest floral differentiation compared to the 12 hours treatments or more. The 12- and 16-hour treatments didn't show significant differences in floral differentiation. While the 16-hour treatment exhibited the highest results in all growth parameters, it was not significantly different from the 12-hour treatment except for shoot dry weight and leaf area. According to the results, 8 hours of photoperiod induced floral differentiation. However, more time was required for flower bud formation, and plant growth was significantly lower compared to photoperiods of 12 hours or more. Considering the energy consumption and its growth, the optimal photoperiod for marigold was 12 hours.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Characteristics of Vegetation Biotope in Cultural Heritage Site of Odaesan National Park (오대산국립공원 공원문화유산지구 식생비오톱 특성 분석)

  • Kim, Ji-Suk;Yi, Young-Kyoung;Yi, Pyong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.2
    • /
    • pp.70-82
    • /
    • 2016
  • We investigated the vegetation structure in Cultural Heritage Site of Odaesan National Park using 52 quadrats for each type of land use to figure out some characteristics of plant biotope. As we classified vegetation communities, they are six groups of communities. distinguished species in two of them are Taraxacum officinal, Erigeron annuus and Poa pratensis which are common in urban areas. Distinguished species in one of them are Potentilla fragarioides var. major which is common in outskirt of forest. And Distinguished species in another 3 communities are Sasa borealis and Quercus mongolica which are common in forest. Using TWINSPAN and DCA, we are able to classify the six communities into 3 types biotope (temple-biotope, slope-biotope, forest-biotope) in Cultural Heritage Site. The dominant species of urban-biotope are Poa pratensis, Artemisia prinseps and that of slope-biotope is Tripterygium regelii. Also the dominant species of forest-biotope are Quercus mongolica, Abies holophylla and Ulmus davidiana var. japonica. We could see more species in slope-biotope than another biotope types. Moreover, in urban-biotope types, we could find many of naturalized plant species.

$CO_2$ Removal Process Analysis and Modeling for 300MW IGCC Power Plant (300MW급 IGCC Power Plant용 $CO_2$ 제거공정 분석 및 모델링)

  • Jeon, Jinhee;Yoo, Jeongseok;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 2020년까지 대형 CCS (Carbon Capture and Storage) Demo Plant 시장 (100MW 이상) 이 형성될 전망이다. 발전 부문에서 대규모 CCS 실증 프로젝트는 총 44개이며 연소전(41%), 연소후(28%), 순산소(3%) 프로젝트가 계획되어 있다. 순산소 연소 기술은 실증진입단계, 연소후(USC) 기술은 상용화 추진단계, 연소전 (IGCC) 기술은 실증완료 이후 상용화 진입 단계이다. IGCC 발전의 석탄가스화 기술은 타 산업분야에 서 상용화 되어있어 기술신뢰성이 높다. IGCC 단위설비 기술 개발을 통한 성능개선 및 비용절감에 대한 잠재력을 가지고 있기 때문에 미래의 석탄발전기술로 고려되고 있다. IGCC 기술은 가장 상용화에 앞서있지만 아직까지 IGCC+CCS 대형 설비가 운전된 사례가 전 세계적으로 없으며 미국 EPRI 등에서 Feasibility Study 단계이다. 현재 국책과제로 수행중인 300MW급 태안 IGCC 플랜트를 대상으로 향후 CCS 설비를 적용했을 경우에 대해 기술 타당성 검증을 목적으로 IGCC+CCS 모델링을 수행하였다. 모델링은 스크러버 후단의 합성 가스를 대상으로 하였다. Water Gas Shift Reaction (WGSR) 공정 및 Selexol 공정을 구성하여 최종 단에서 수소 연료를 생산할 수 있도록 하였다. WGSR 공정은 Co/Mo 촉매반응기로 구성되었다. WGSR 모델링을 통하여 주입되는 스팀량 (1~2 mol-steam/mol-CO) 및 온도 변화 ($220-550^{\circ}C$)에 따른 CO가스의 전환율을 분석하여 경제적인 설계조건을 선정하였다. Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum으로 구성된다. Selexol 공정의 $CO_2$$H_2S$ 선택도를 분석 하였으며 단위 설비별 설계 조건을 예측하였다. 모델링 결과 59kg/s의 합성가스($137^{\circ}C$, 41bar, 가스 조성은 $CO_2$ 1.2%, CO 57.2%, $H_2$ 23.2%, $H_2S$ 0.02%)가 WGSR Process를 통해 98% CO가 $CO_2$ 로 전환되었다. Selexol 공정을 통해 $H_2S$ 제거율은 99.9%, $CO_2$제거율은 96.4%이었고 14.9kg/s의 $H_2$(86.9%) 연료를 얻었다. 모델링 결과는 신뢰성 검증을 통해 IGCC+CCS 전체 플랜트의 성능예측과 Feasibility Study를 위한 자료로 활용될 예정이다.

  • PDF

GIS-Based Methods to Assess the Population Distribution Criteria for Undesirable Facilities: The Case of Nuclear Power Plants (비선호 시설의 인구분포 관련 입지기준 평가를 위한 GIS-기반 방법론 연구 -원자력 발전소의 경우-)

  • Lee, Sang-Il;Cho, Daeheon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.755-774
    • /
    • 2012
  • The main objective of the study is to propose GIS-based methods to assess the population distribution criteria for undesirable facilities such as nuclear power plants. First of all, a review of the relevant criteria was conducted for the official documents compiled by such institutions as IAEA (International Atomic Energy Agency), U.S. NRC (Nuclear Regulatory Commission), and some national institutes including the Korea Institute of Nuclear Safety. It is informed from the review that the fundamental principle underlying the various criteria is to maximize the distance between a plant and the nearest population center. It is realized that two interrelated GIS-based techniques need to be devised to put the principle into practice; sophisticated ways of representing population distribution and identifying population centers. A dasymetric areal interpolation is proposed for the former and cell-based and area-based critical density methods are introduced. Grid-based population distributions at various spatial resolutions are created by means of the dasymetric areal interpolation. By applying the critical density methods to the gridded population distribution, some population centers satisfying the population size and density criteria can be identified. These methods were applied to the case of the Gori-1 nuclear power plant and their strengths and limitations were discussed. It was revealed that the assessment results could vary depending upon which method was employed and what values were chosen for various parameters. This study is expected to contribute to foster the applications of methods and techniques developed in geospatial analysis and modeling to the site selection and evaluation.

  • PDF