• Title/Summary/Keyword: Energy losses

Search Result 707, Processing Time 0.028 seconds

Finite Element Analysis of Power Cables for Wind Turbine Application (전자장해석을 이용한 풍력발전용 전력 케이블의 전자기적 고찰)

  • Kim, Ji-Hyun;Cho, Sung-Ho;Lee, In-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents electromagnetic finite element analysis of power cables for wind turbine application. Eddy current losses are calculated due to high currents along metallic part, and dielectric strength on power cables is investigated for case study, which suggests the optimal cabling configuration for wind turbine construction.

  • PDF

Energy Budget of the Mysid Shrimp, Neomysis intermedia Reared in the Laboratory (실내 사육한 Neomysis intermedia의 생활사에 따른 에너지 수지)

  • Choi, You-Gill;Rho, Sum;Chu. Soo-Dong;Park, Kie Young
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.289-300
    • /
    • 1997
  • Energy budget of mysid shrimp, Neomysis intermedia in Lake Kyongpo was determined at constant temperature (2$0^{\circ}C$). Energy used by reared mysids were calculated from data on feeding, growth, molting, reproduction, and metabolism. The Energy used by growth of juvenile and adult were 6.87 cal in females of 8.55mm in length, and 5.67 cal in males of 7.53mm in length, respectively. Molting losses were estimated to be 0.46 cal in females and 0.38 cal in males from juvenile to adult. Energy used in respiration were estimated to be 48.48 cal in females and 36.45 cal in males from juvenile to adult. The energy intakes from feeding were 84.15 cal in females and 67.09 cal in males from juvenile to adult. Energy losses by excretion were 10.36 cal in females and 6.46 cal in males. Thus, females assimilated 86.65% and males 81.99% of assimilated energy in somatic growth. The gross growth efficiencies (k1) showed 8.71% for females and 9.02% for males and the net growth efficiencies (k2) showed 10.05% for females and 12.36% for males. Maintenance costs were estimated at 66.48% of assimilated energy in females and 66.26% in males. Molting losses among the energy assimilated from juvenile to adult were estimated to be 0.63% in males and 0.69% in females.

  • PDF

A New Energy Recovery Snubber for Boost Converter (부스트 컨버터용 새로운 에너지 재생 스너버)

  • 김만고
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.57-63
    • /
    • 1997
  • The power diode's reverse recovery current when switching on the main switch results in losses of the switch in boost converter. The high turn-on losses can be controlled by snubber circuit. In this paper, a new snubber circuit which can reduce the turn-on current stress mentioned above and recover trapped snubber energy in capacitor is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.

  • PDF

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Extension of a cable in the presence of dry friction

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.313-329
    • /
    • 1996
  • A mathematical model of a cable as a system of interacting wires with interwire friction taken into account is presented in this paper. The effect of friction forces and the interwire slip on the mechanical properties of tension cables is investigated. It is shown that the slip occurs due to the twisting and bending deformations of wires, and it occurs in the form of micro-slips at the contact patches and macro-slips along the cable. The latter slipping starts near the terminals and propagates towards the middle of the cable with the increase of tension, and its propagation is proportional to the load. As the result of dry friction, the load-elongation characteristics of the cable become quadratic. The energy losses during the extension are shown to be proportional to the cube of the load and in inverse proportion to the friction force, a result qualitatively similar to that for lap joints. Presented examples show that the model is in qualitative agreement with the known experimental data.

High Frequency Soft Switching Forward DC/DC Converter Using Non-dissipative Snubber (무손실 스너버적용 고주파 소프트 스위칭 Forward 컨버터)

  • 최해영;김은수;변영복;김철수;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.614-617
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

  • PDF

New Mathematical Models with Core Loss Factor for Control of AC Motors

  • Shinnaka, Shinji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.630-635
    • /
    • 1998
  • This paper establishes in a new unified manner new mathematical models with core(iron) loss factor for two kinds of AC motors, induction and synchronous motors which are supposed to generate torque precisely or/and efficiently under vector controls. Our new models consist of three basic equations consistent with the others such as differential equation describing electromagnetic dynamics, torque equation describing torque generating mechanism, energy transmission equation describing how injected energy is wasted, saved or transmitted where all vector signals are defined in general frame of arbitrary instant angular velocity. It is clearly shown in our models that equivalent core-loss resistance can express appropriately and separately both eddy-current and hysteresis losses rather than mere vague loss. Proposed model of induction motor is the most compact in sense of the number of employed interior states and parameters. This compact model can also represent eddy-current and hysteresis losses of rotor as well as stator. For synchronous motor, saliency is taken into consideration. As well known model for cylindrical motor can be obtained directly from salient one as its special case.

  • PDF

Thermal flow analysis in heat regenerator with spheres (구형축열체를 이용한 축열기내 열유동 해석)

  • 조한창;조길원;이용국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.359-364
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, were numerically analyzed to evaluate the heat transfer and pressure losses and to suggest the parameter for designing heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data conducted from Chugairo. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator length need to be linearly increased with inlet Reynolds number of exhaust gases. It is considered that inlet Reynolds number of exhaust gases should be introduced as a regenerator design parameter.

  • PDF

The Economic Evaluation of Renewable Energy Penetration Based on Grid Parity According to the Ratio of DC Power Supply (Grid Parity를 고려한 DC 전원 공급율에 따른 신재생에너지 계통 연계의 경제성 평가)

  • Kim, Sung-Yul;Lee, Sung-Hun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • The growth in IT industry has brought a corresponding rise in the number of connected digital devices in the distribution network. These digital loads lead to AC to DC conversion losses in order to supply power to them. The more the renewable energies and plug-in electrical vehicles penetrated our lives, the more the electrical losses are caused by AC to DC conversion process. Hence, this paper suggests the methodology for evaluating the amount of power supplied according to the ratio of DC power supply and performs an economic analysis of DC distribution system considering grid parity. In here, the cost of carbon emission reduced by renewable energy is also concerned.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.