• Title/Summary/Keyword: Energy load calculation

Search Result 238, Processing Time 0.037 seconds

A Study on Development of Simplified Thermal Load Calculation Program for Building Energy Analysis (건물에너지 해석을 위한 간이열부하 해석프로그램 개발에 관한 연구)

  • Kang, Yoon-Suk;Um, Mi-Eun;Ihm, Pyeong-Chan;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.72-77
    • /
    • 2008
  • About 25% of overall energy use of Korea had been spent in buildings. It is crucial to acknowledge the importance of saving energy in buildings. In order to save energy, it is important to predict accurate energy use. There are numerous energy simulation program that predicts both energy load and energy use. The problem of the energy simulation program is that it holds too many input variables, and it needs experts to model a building. So, our purpose of this study is to develop the simplified thermal load calculation program for building energy analysis which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the engine of the program is DOE2, we verified the validity of S-DOE by comparing peak heating & cooling load results and annual energy use results. The results shows that there are little difference between VisualDOE and S-DOE. Also it showed that S-DOE took less time to input variables than VisualDOE. These results reveals that the application of S-DOE is possible to accurately predict energy load and energy use of the building and still have strong point that it takes less time to analyse building energy.

  • PDF

A Study on a Load Flow calculation for Preserved Jacobian Matrix's elements except diagonal terms (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • Moon, Yong-Hyun;Lee, Jong-Gi;Choi, Byoung-Kon;Park, Jeong-Do;Ryu, Hun-Su
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.311-315
    • /
    • 1998
  • Load Flow calculation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning, operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to solve load flow equation and to modify above defects. And it preserve certain part of Jacobian matrix to shorten the time of calculation. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical result and the number of iteration got by Newton-Raphson method. The effect of time reduction showed about 28%, 30%, at each case of 39 bus, 118 bus system.

  • PDF

Investigation of the effect of damper location and slip load calculation on the behavior of a RC structure

  • Mehmet Sevik;Taha Yasin Altiok;Ali Demir
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.365-375
    • /
    • 2023
  • Energy dissipation systems increase the energy dissipation capacity of buildings considerably. In this study, the effect of dampers on a typical 10-storey reinforced concrete structure with a ductile moment-resisting frame was investigated. In this context, 5 different models were created according to the calculation of the slip load and the positions of the dampers in the structure. Nonlinear time-history analyzes using 11 different earthquake acceleration records were performed on the models using the ETABS program. As a result of the analyses, storey displacements, energy dissipation ratios, drift ratios, storey accelerations, storey shears, and hysteretic curves of the dampers on the first and last storey and overturning moments are presented. In the study, it was determined that friction dampers increased the energy dissipation capacities of all models. In addition, it has been determined that positioning the dampers in the outer region of the structures and taking the base shear as a basis in the slip load calculation will be more effective.

A Study on Validity of Applying Simplify modeling Method for Heating/Cooling Load Calculation (냉난방부하 계산의 단순화 모델링 기법 적용 타당성 검토에 관한 연구)

  • Kang, Yoon-Suk;Park, Jong-Il;Ihm, Pyeong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1386-1391
    • /
    • 2008
  • As the time goes by, the energy use in buildings are increasing threateningly. So, it is important to have an accurate energy load calculation for buildings. The accurate energy simulation program carries numerous input data. So, our purpose of this study is to verify the application of simplify modeling method which eliminates coordinates of building components instead of using full coordinates by using DOE2. After comparing original modeling method with simplify modeling method, we applied PAF for daylighting control in the building to verify the application of daylighting control in simplify modeling method. The results shows that there are little difference between original modeling and simplify modeling. Also it showed that application of daylighting control has little difference between original modeling so it is feasible to adapt simplify modeling. These results reveals that the application of simplify modeling is possible to predict energy load and use of the building.

  • PDF

Verification Experiment and Calculation of Cooling Load for a Test Space (시험공간에 대한 냉방부하 실증실험 및 계산)

  • 유호선;현석균;김용식;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.641-651
    • /
    • 2003
  • In order to assess the reliability of a building energy simulation program (TRNSYS) from the standpoint of user, a set of verification experiment and calculation of cooling load for a test space is carried out. This work is a complement of the previous study that dealt with heating load for the same space. The test space is kept airtight to eliminate the source of uncertainties in modeling. A window-mounted, on/off controlled air-conditioner is used for cooling, whose performance has been established a priori. The calculation encompasses two models for evaluating cooling load in TRNSYS: energy rate control and temperature level control. Comparison of the total cooling loads obtained from different sets of experimental data enables to validate the measurements. The experimental result shows that the latent load is fairly large even in the absence of apparent air change in the space, which needs to be clarified. Each of hourly and daily accumulated sensible loads is compared between the experiment and two calculation models. Despite an inconsistency associated with solar irradiation, both of the models agree favorably with the experiment within a tolerance, illustrating their capability of properly predicting space thermal loads.

Intermittent Heating and Cooling Load Calculation Method -Comparing with ISO 13790

  • Lee, Sang-Hoon
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • College of Architecture, Georgia Institute of Technology, Atlanta, GA, US Abstract The intermittent heating and cooling energy need calculation of the ISO 13790 monthly method was examined. The current ISO 13790 method applies a reduction factor to the continuous heating and cooling need calculation result to derive the intermittent heating and cooling for each month. This paper proposes a method for the intermittent energy need calculation based on the internal mean temperature calculation. The internal temperature calculation procedure was introduced considering the heat-balance taking into account of heat gain, heat loss, and thermal inertia for reduced heating and cooling period. Then, the calculated internal mean temperature was used for the intermittent heating and cooling energy need calculation. The calculation results from the proposed method were compared to the current ISO 13790 method and validated with a dynamic simulation using EnergyPlus. The study indicates that the intermittent heating and cooling energy need calculation method using the proposed model improves transparency of the current ISO 13790 method and draws more rational outcomes in the monthly heating and cooling energy need calculation.

Verification Experiment and Calculation of Heating Load for a Test Space (시험공간에 대한 난방부하 실증실험 및 계산)

  • 현석균;홍희기;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.153-160
    • /
    • 2002
  • As a way to assess the reliability of programs for building energy analysis, verification experiment and calculation of heating load are simultaneously conducted for a well-defined test space. Experimental conditions are carefully set to minimize uncertainties associated with radiation heating, air change, infiltration, and room-to-room interaction. Dyna- mic load calculations using TRNSYS, which are performed for two different computation domains, rely on the energy rate control that represents inherent load characteristics of a space. The predicted instantaneous heating load favorably simulates the overall behavior the measured one, though the latter fluctuates much more rapidly than the former Comparison of the accumulative load between the experiment and calculations shows a close agreement within an engineering tolerance, regardless of the computation model. It is deduced from such findings that the present experimental results along with weather information can serve as a set of reference data for validating load calculation softwares from the users'standpoint. In order to enhance the completeness of this work, a complementary study on the cooling load for the same test space is highly recommended.

Study on the Annual Building Load Predicting Method using a Polynomial Function (다항함수를 이용한 건물의 연간부하 예측 방법에 관한 연구)

  • Yun, Hi-won;Choi, Seung-Hyuck;Ryu, Hyung-Kyou
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • In order to use and manage the building energy efficiently, it is necessary to minimize building energy consumptions, and establish operation plans of various equipment. The maximum heating and cooling load calculation is an essential way in various equipment selections, and the annual building load calculation is used in forecasting & evaluating the LCC required for operation plan. In this study, noting that the annual building load changes depending on outside temperature around year, we propose a predicting method of annual building load. By using the $4^{th}$ polynomial function that have two double radix and a feature the $f(x)=a^4$ in x = 0 condition, we can calculate annual building load very easily only with the two result (maximum heating and cooling load) and a minimum parameters.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.