• 제목/요약/키워드: Energy generator

검색결과 1,846건 처리시간 0.032초

다층형 블레이드를 적용한 소형 풍력발전기의 출력특성 (Output Characteristics of Small Wind Power Generator Applying Multi-Layered Blade)

  • 이민구;박왈서
    • 한국산학기술학회논문지
    • /
    • 제18권11호
    • /
    • pp.663-667
    • /
    • 2017
  • 최근 화석연료의 사용으로 인한 연료고갈 및 환경문제가 대두되고 있으며 이를 해결하기 위한 대체에너지 개발이 시급한 실정이다. 풍력에너지는 대체에너지 중 지속적으로 무제한 사용할 수 있고 공해물질 배출이 없는 청정에너지로 각광받고 있다. 풍력발전은 바람에너지가 로터 블레이드를 통해서 운동에너지로 변환되고 다시 발전기를 통해서 전기에너지를 발생시키는 에너지 변환기술이며, 풍력발전기의 중요부품인 블레이드의 설계 및 제작은 매우 중요한 요소이지만, 우리나라는 이에 대한 기초자료 및 핵심기술 등이 부족하여 아직도 중요부품들을 외국에서 수입하여 사용하고 있는 실정이다. 본 연구에서는 저 풍속에서도 발전 가능한 다층형 구조의 블레이드를 소형풍력발전기에 적용하여 풍속 및 블레이드 개수에 따른 발전기의 출력특성을 분석하였다. 연구결과, 최대풍속 8m/s일 때 블레이드 3개를 적용하면 블레이드를 1개 및 2개를 적용했을 때보다 발전기 출력전압은 33% 및 18%로 증가되었고, 발전기 출력전류는 33% 및 15%로 증가되었으며 발전기 RPM은 23% 및 13%로 증가되었다. 본 연구에서다층형 구조의 블레이드를 소형풍력발전기에 적용한 결과 발전기의 출력특성이 향상되었고 저 풍속에서도 전기에너지의 수집이 가능함을 확인하였다.

정수장 마이크로 소수력 발전기 적용에 대한 연구 (A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant)

  • 김종겸;박영진;김일중
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.

THE MODEL PREDICTIVE CONTROLLER FOR THE FEEDWATER AND LEVEL CONTROL OF A NUCLEAR STEAM GENERATOR

  • Lee, Yoon Joon;Oh, Seung Jin;Chun, Wongee;Kim, Nam Jin
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.911-918
    • /
    • 2012
  • Steam generator level control at low power is difficult due to its adverse thermal hydraulic properties, and is usually conducted by an operator. The basic model predictive control (MPC) is similar to the action of an operator in that the operator knows the desired reference trajectory for a finite period of time and takes the necessary control actions needed to ensure the desired trajectory. An MPC is based on a model; the performance as well as the efficiency of the MPC depends heavily on the exactness of the model. In this study, steam generator models that can describe in detail its thermal hydraulic behaviors, particularly at low power, are used in the MPC design. The design scope is divided into two parts. First, the MPC feedwater controller of the feedwater station is determined, and then the MPC level controller for the overall system is designed. Because the dynamic properties of a steam generator change with the power levels, a realistic situation is simulated by changing the transfer functions of the steam generator at every time step. The resulting MPC controller shows good performance.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석 (Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes)

  • 윤규형;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

해상용 3 MW 영구자석형 동기발전기의 대안설계 (Alternative Design of 3MW Offshore PM Synchronous Generator)

  • 김동언;이홍기;한홍식;정영규;서형석;정진화;임민수;곽승근;오만수;최준혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2008
  • Pohang Wind Energy Research Center (PoWER-C) is developing a 3 MW Radial Flux Permanent Magnet (RFPM) Synchronous Generator for offshore Wind Energy Converter (WEC). The blade rotor rpm is 15.7 and the gear ratio is set to be 92.93. The nominal generator rpm at the rated load is about 1459. Baseline design with surface mounted PM magnets are completed. However, there is some concern about the excessive eddy current heating in the magnets. To alleviate this problem, another design with embedded magnet is going on. With embedded magnets, the generator length should be increased to compensate the increased flux leakage. But the field fluctuation in the magnets due to the slots are greatly reduced. This means less eddy currents and lower magnet operating temperature. In this report, engineering efforts for embedded rotor is presented.

  • PDF

풍력발전기 출력변동성에 대비한 가변속 양수발전기의 주파수 제어효과 (Effect of Adjustable Speed Pumped Storage Power Generator on the Frequency Control Against the Intermittence of Wind Turbine Output)

  • 박민수;전영환
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.338-342
    • /
    • 2014
  • Energy storage is a key issue when integrating large amounts of intermittent and non-dispatchable renewable energy sources into electric power systems. To maintain the instantaneous power balance and to compensate for the influence of power fluctuations from renewable sources, flexible capability for power control is needed. Adjustable Speed Pumped Storage Power Generator is pumped storage unit that is adjustable for pump output adjustments as well as the highest efficiency operations because it has fast response time. In this paper we address the adjustable speed pumped storage power generator for frequency control against the intermittence of wind turbine output and calculate the appropriate capacity of adjustable speed pumped storage power generator.

울돌목 조류발전소 설치용 1MW 발전설비 시제품 제어특성 (Control characteristics of the prototype power trains of 1MW Uldolmok tidal current plant)

  • 박정우;이기욱;김동욱;이광수;박진순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.644-647
    • /
    • 2007
  • We have developed electrical power train for 1MW tidal current plant which is composed of both 500kW tidal current plant with doubly-fed induction generator and 500kW tidal current plant with synchronous generator. To check performances of the protype, 2MW dynamometer is used to simulate a helical turbine, and then protype generator and converter are coupled with the dynamometer separately. From the suggested experimental results it is reconfirmed that two kinds of the power train to be installed at the Uldolmok located at southwestern shore in Korea are able to operate under all kinds of the condition about speed and power.

  • PDF

자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구 (An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

전자기력을 고려한 플라이휠 에너지 저장시스템용 전동발전기 구조해석 (Structural Analysis considering Electromagnetic Force on Motor/Generator for Flywheel Energy Storage System)

  • 고우식;류동완;오시덕;성태현;한상철;한영희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.485-490
    • /
    • 2004
  • Flywheel Energy Storage System(FESS) consists of a high speed flywheel with an integral motor/generator suspended on non contact bearings and in an evacuated housing. Permanent magnet machines as the FESS motor/generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper, the structural design method of rotor retainer for a high speed motor/generator are presented.

  • PDF