• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.026 seconds

Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer (압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구)

  • Chang Min Baek;Geon Lee;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure (티탄산바륨 덴드라이트 나노구조체 기반 플렉서블 압전 나노발전소자)

  • Bae, Soo Bin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-145
    • /
    • 2015
  • In this paper, the flexible piezoelectric nanocomposite generator(NCG) device based on $BaTiO_3$ nanostructures was fabricated via simple and low-cost spin coating method. The $BaTiO_3$ nanostructures synthesized by self-assembly reaction showed dendrite morphologies. To produce the piezoelectric nanocomposite(p-NC layer) which acts as an electric energy source in NCG device, the piezoelectric nanopowders($BaTiO_3$) were dispersed in polydimethylsiloxane(PDMS). Sequently, the p-NC layer was inserted in two dielectric layer of PDMS; these layers enabled the NCG device flexibility as well as durability prohibiting detachment(exfoliation) for significantly mechanical bending motions. The fabricated NCG device shows average maximum open circuit voltage of 6.2 V and average maximum current signals of 300 nA at 20 wt% composition of $BaTiO_3$ nanostructures in p-NC layer. Finally, the flexible energy harvester generates stable output signals at any rate of frequency which were used to operate LCD device without any external energy supply.

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.