• Title/Summary/Keyword: Energy feedback

Search Result 410, Processing Time 0.029 seconds

Literature review of technologies and energy feedback measures impacting on the reduction of building energy consumption (건물에너지 사용 저감을 위한 에너지 피드백에 관한 기초연구)

  • Lee, Eun-Ju;Pae, Min-Ho;Jang, Ji-Hyeon;Kim, Dong-Ho;Kim, Jae-Min;Kim, Jong-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.813-818
    • /
    • 2008
  • In order to reduce energy consumption, this study presents a way to energy reduction through energy-feedback which enables a household to self-recognize the need for energy reduction and respond to. The effect of this energy-feedback has been reported as $10{\sim}15%$ in average, and been actively investigated in abroad from 1970's while study in korea has been in its first step. In this study, examination on the cases of abroad study is made as it shows the effectiveness and applicability of energy feedback. And paradigms to consider for application to korea will be suggested anticipating the change of actions through energy feedback.

  • PDF

A Study on the Effects of Resident Participation in Energy Saving Activities (거주자 참여형 에너지 절감 활동 효과 연구 -S대학 기숙사 거주 학생을 대상으로 한 에너지피드백 활동을 중심으로-)

  • Jung, Hye-jin;Song, Hae
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.253-261
    • /
    • 2018
  • As user-involved energy saving activities have become important in recent years, many forms of energy feedback experiments have been conducted. We conducted a study to determine if energy feedback activities affect energy saving for students living in dormitories at a university in Seoul. In particular, smart plugs were used for efficient research and quantitative performance measurements, and the extent of the impact of competition and rewards on participant energy saving behavior was further analyzed. The main findings of this study are as follows. First, the power usage of groups using smart plugs was lower than that of those without them. Second, energy feedback delivered to smart plug users did not have a significant impact on reduction of electric power consumption. Third, competition and compensation strategies had additional effects in reducing power usage for smart plug users. As a result, methods to deliver energy feedback more effectively as ICT technologies develop and efficient energy activities using IoT technologies can be expected to spread widely in the future.

Status of Industrial Electronic and Their Trends (공업전자의 현황과 전망)

  • 오철수;손성재
    • 전기의세계
    • /
    • v.20 no.1
    • /
    • pp.45-47
    • /
    • 1971
  • 공업전자의 현황과 전망에서는 SCR을 주축으로 한 반도체소자를 이용한 Energy변환 및 제어의 분야의 반도체소자를 매개로한 Energy변환과 제어 및 기계의 전자화된 조절장치를 체계화한 전기공학의 분야에 대해 설명했으며, 우주통신과 우주선 추적에서는 아폴로 S대통일계통, Goddard식 거리속도추적계통, 중계위성에 대해 설명했으며 Feedback inbiological systmems lecture notes에서는 Familar definition of Feedback, Definition of Control Feedback에 대해 논하였다.

  • PDF

Reduced Feedback Energy Based Hybrid Beamforming for Millimeter Wave MIMO Systems (다중 안테나 밀리미터파 시스템에서 피드백 에너지를 절감시키는 하이브리드 빔포밍 기술)

  • Noh, Jeehwan;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.3-8
    • /
    • 2014
  • We consider a limited feedback based hybrid beamforming which reduces the energy of feedback information. In the millimeter wave channel, some rays with large ray gain dominate energy of the channel. Using this point, we propose a channel feedback scheme that employs limited number of channel rays. Also, we provide a hybrid beamforming scheme for the limited feedback system. Based on the simulation results, the proposed scheme shows a comparable data rate performance with conventional schemes, while it remarkably reduces energy of channel feedback.

Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter

  • Yang, Tianliang;Zhao, Chunyu;Chen, Dayue
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.548-554
    • /
    • 2010
  • The transcutaneous energy transmission system (TETS) composed of a Class-E amplifier may operate at a state away from the optimum power transmission due to the load variation. By introducing the feedback-loop technique, the TETS can keep the optimum state with constant output voltage by adjusting the important design parameters, that is, the duty ratio and frequency of the driving signal and the supply voltage. The relations between these adjusted parameters and the load are investigated. The effectiveness of the feedback technique is validated through a design example with a variable load parameter. The experimental results show that the Class-E amplifier in the feedback loop can keep operating at the optimum state under the condition of up to 50 percent variation of the load value.

The Relative Effects of Feedback Frequency and Specificity of Eco-IVIS on Fuel Efficiency and Workload (에코 드라이빙 피드백 제공 빈도와 구체성이 연비와 작업부하에 미치는 효과)

  • Lee, Kyehoon;Cho, Hangsoo;Oah, Shezeen;Moon, Kwangsu
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.132-138
    • /
    • 2015
  • This study examined the relative effects of feedback frequency and specificity of Eco-IVIS(eco in-vehicle information system) on the fuel-efficiency and workload. Eighty participants randomly assigned into four experimental groups (high frequency/specific, high frequency/global, low frequency/specific, and low frequency/global feedback) and they drove 16.4Km motorway under the each feedback condition. The dependent variable were fuel efficiency and Drive Activity Load Index which measured participants' subjective ratings of driving workload. The results showed that high frequent feedback was more effective for increasing fuel-efficiency than low frequent feedback, however, there was no significant difference of fuel-efficiency between specific and global feedback. Although, overall DALI score was comparable among four experimental conditions, visual demand score was significant higher under the high frequent feedback condition than low frequent feedback.

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.

A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Lee, Min-Su;Cho, Yong-Rae;Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • 이상현;민경원;강상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.431-438
    • /
    • 2004
  • This study is on control-gain estimation of energy dissipation control algorithms. Velocity feedback, bang-bang, and energy dissipation control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback and energy dissipation control algorithms, and chattering problem in bang-bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently, and thus provide good control performance.

  • PDF

A Novel Double-Loop Vector Control Strategy for PMSMs Based on Kinetic Energy Feedback

  • Wang, Anbang;Wang, Qunjing;Jiang, Weidong
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1256-1263
    • /
    • 2015
  • A novel vector control strategy for a permanent magnet synchronous motor (PMSM) based on the kinetic energy stored in the rotor is proposed in this paper. The novel strategy is composed of two closed loops, in which the current loop is the inner loop, and the kinetic energy serves as the outer loop. The theoretical basis and the design procedure of the two loops are given. The feasibility of the proposed control strategy is verified by experimental results. When compared with traditional vector control strategies, the proposed vector control strategy based on energy feedback has better dynamic performance. In addition, an effective estimation solution for the load variation is put forward.